ME 331 Thermodynamics II

Prerequisite: ME 230 Thermodynamics I

Instructor: Chainarong Chaktranond (Dept. of Mechanical Engineering) Lecture: Tue (9.30-11.00) and Wed (13.30 – 15.00) E-mail: <u>cchainar@engr.tu.ac.th</u> Office: room 413

Relating courses

- ME 230 Heat transfer
- ME 333 Internal combustion engine
- ME 345 Power plant engineering
- ME 434 Refrigeration and air conditioning
- ME 436 Gas turbine
- ME 438 Energy sources and conversion
- ME 439 Energy management in building and industry

Red: Compulsory courses

Objectives

- To understand the closed system and open system/ control volume concepts and be able to describe engineering problems in terms of these concepts.
- To understand the 1st and 2nd laws of thermodynamics, and learn how to apply these laws to both open and closed systems.
- To understand how the relations between the energy storage and phase change in various kinds of power cycles and refrigeration cycles.
- To understand how to analysis of performance of engineering components, systems.

Teaching schedule

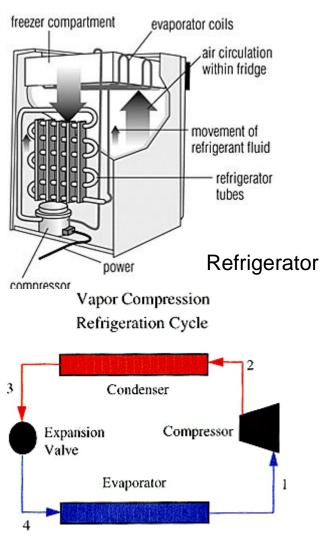
Session	Topics		
1 – 2	1. Reviews of Thermodynamics I		
	Overviews and importance of Thermodynamics in real applications; Open-close		
	systems; Control volume; adiabatic process; Isothermal process; Steam table;		
	Conservation of mass; Conservation of energy		
3 - 6	2. Second law of Thermodynamics		
	Introduction to the second law; Refrigerators and heat pumps; Reversible and		
	Irreversible processes; Carnot cycle; Carnot refrigerator and heat pumps		
7 – 10	3. Entropy		
	Entropy; increase of entropy principle; Isentropic processes; Entropy generation; T –		
	ds Relations; Entropy change of liquids, solids, and ideal gases; Reversible Steady –		
	flow work; Minimizing the compressor work; Isentropic efficiencies of steady – flow;		
	Entropy balance		
11 – 14	4. Exergy: A measure of work potential		
	Work potential of energy; Reversible work and irreversibility; Second – law efficiency;		
	Exergy change of a system; Exergy transfer by heat, work, and mass; Decrease of		
	exergy principle; Exergy balance 4		

Teaching schedule (Cont')

Session	Topics	
*15 – 18	5. Gas power cycles	
	Basic considerations in the analysis of power cycle; Carnot cycle; Air standard	
	cycle; Reciprocating engines; Otto cycle; Diesel cycle; Stirling cycle; Brayton	
	cycle; Second – law analysis of gas power cycles	
19 – 21	6. Vapor and combined power cycles	
	Carnot vapor cycle; Rankine cycle; Deviation of actual vapor power cycles;	
	Cogeneration; Combined gas – vapor power cycles	
22 – 24	7. Refrigeration cycles	
	Refrigerators and heat pumps; Reversed Carnot cycle; Ideal vapor –	
	compression refrigeration cycle; Actual vapor compression refrigeration cycle	

Reference

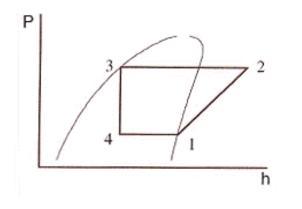
- Lecture note (powerpoint) (<u>http://www.engr.tu.ac.th/~cchainar</u>)
- Cengel, Y.A., and Boles, M., 2002. Thermodynamics an engineering approach. 4th ed., McGraw-Hill.

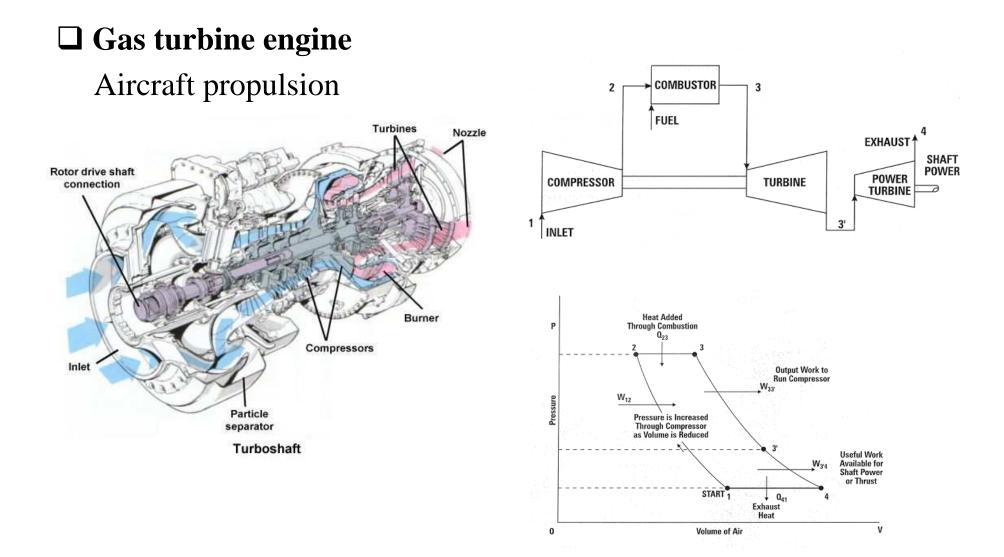

Tentative Evaluation

Attendance, Quiz and Assignment	20%
Mid-term Examination (topic $1 - 4$)	20%
2nd Examination (topic 5)	30%
Final Examination (topic $6-7$)	30%
Total	100%

≥ 80	Α
74 - 79	B+
68 - 73	В
62 – 67	C+
56 – 61	С
50 – 55	D+
44 – 49	D
< 44	F

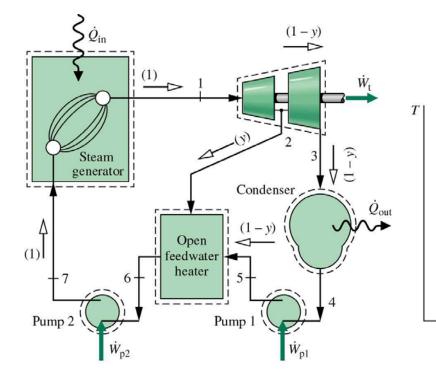
7


□ Refrigeration and air-conditioning systems



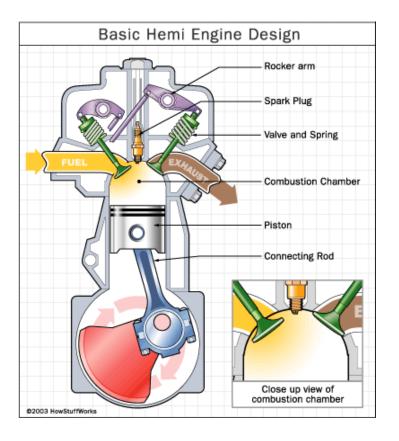
Air-conditioning system

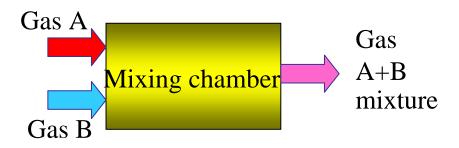
Phase diagram for vapor compression refrigeration cycle



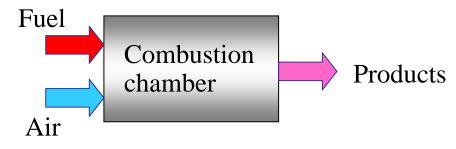
D Power plant

Heat \rightarrow Electricity

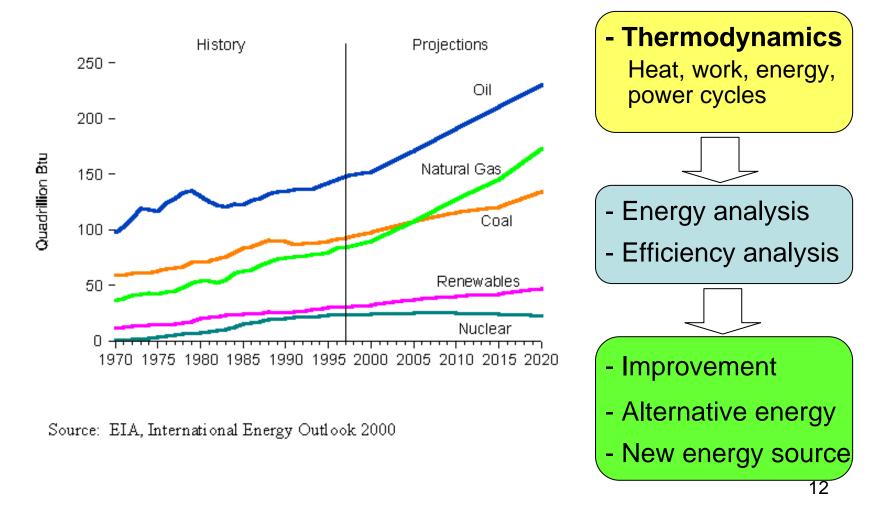


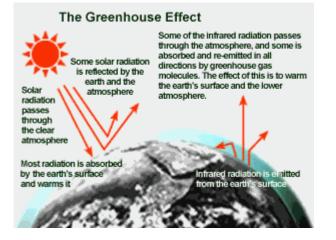

Turow Power Plant Courtesy of Turow Plant

S

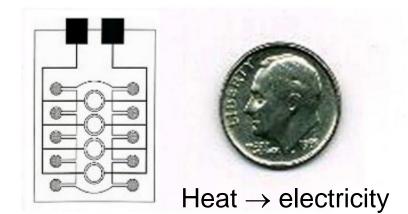

□ Mixing w/o chemical reaction

(a) Without chemical reaction

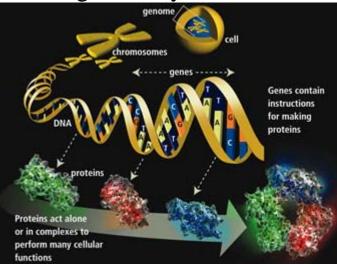




Applications of Thermodynamics□ Evaluation and improvement of the thermal efficiencies


World Energy Consumption by Fuel Type, 1970-2020

Global warming

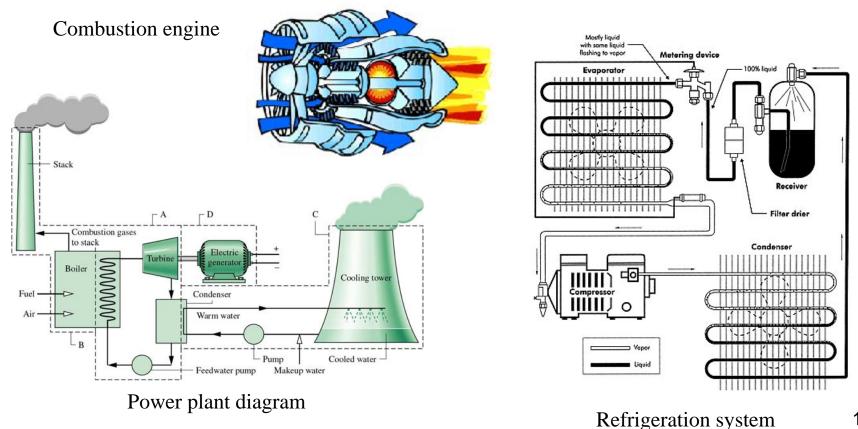


□ Micro power generator

- □ Biological thermodynamics Healing illness and disease

 - Drug delivery

□ Food engineering

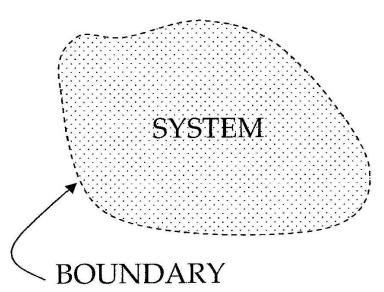


Thermodynamics II

□ Principle and efficiency

- Power cycles
- Principles of refrigeration and air-conditioning system

□ Reacting mixtures and combustion

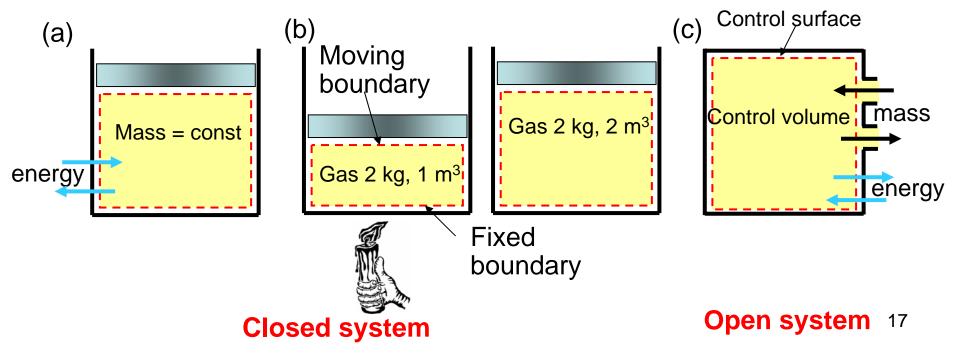

Thermodynamics

□ From Greek, *thermos* = heat, and *dynamis* = power

- Describe processes that involve changes in temperature, transformation of energy, relationship between heat and work
- The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, cell biology, biomedical engineering, and materials science.

Thermodynamic systems

- "<u>System</u>" is defined as a quantity of matter or a region in space chosen for study.
- "Surrounding" is the mass or region outside the system.
 - The possible exchanges of work, heat, or matter between the system and the surroundings take place across this boundary.



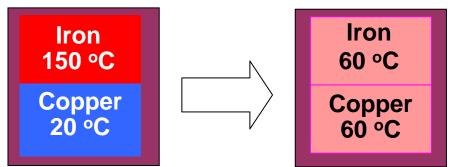
SURROUNDINGS

Dominant classes of systems

- 1. matter and energy do not cross **Isolated systems** the boundary.
- 2. <u>Adiabatic systems</u> – heat does not cross the boundary.
- 3.
- 4. **Closed systems**
- 5. **Open systems**

- **Diathermic systems** heat can cross the boundary.
 - matter does not cross the boundary.
 - heat, work, and matter can cross the boundary.

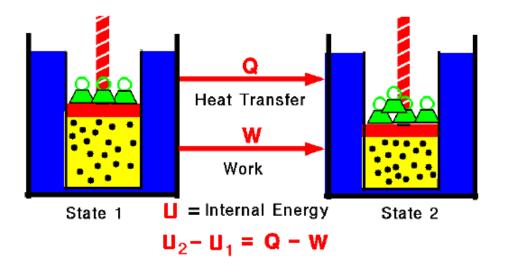
Thermodynamic processes


- 1. <u>Reversible process</u> Both the system and surrounding can be returned to their initial states.
- 2. <u>Irreversible process</u> System and all parts of its surrounding cannot be exactly restored to their respective initial state after the process has occurred.
- 3. <u>Isothermal process</u> A process occurs at const temperature
- 4. **Isentropic process** A process occurs at constant entropy.
- 5. Isobaric process A process occurs at constant pressure.
- 6. Isochoric process A process occurs at constant volume.

Laws of Thermodynamics

Zeroth law of Thermodynamics (R.H. Fowler, 1931)

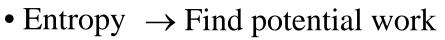
- "Thermal equilibrium: two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact".
- Thermometer

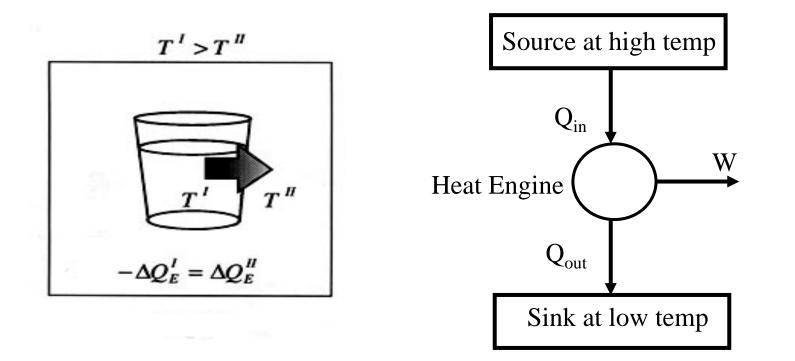

19

Laws of Thermodynamics

□ 1st law of Thermodynamics (William Rankine, 1850s)

- An expression of the conservation of energy
- Assert that energy is a thermodynamic property
- Heat, Work, energy





Laws of Thermodynamics

□ 2nd law of Thermodynamics (William Rankine, 1850s)

- Assert that energy has quality and quantity and
- Actual processes occur in the direction of decreasing quality of energy

