ME 332 HEAT TRANSFER

Credit: 3(3-0-6) Semester 2 Year 2006 Prerequisite: ME 241 (Mechanics of Fluid), ME 331 (Thermodynamics for Mechanical engineer)

Instructor:	Chainarong Chaktranond	
	Room 413, Tel.(ext.) 3144,	
	E-mail address: <u>cchainar@engr.tu.ac.th</u>	

Lecture time: Thrus (9.30 – 12.30)

Consulting hours: Monday 13.30 – 16.00 or make an appointment via email

Objectives: Students are expected to

- 1. To understand the basic principles of heat transfer
- 2. To be able to analyze the thermal applications and equipments

Course Description:

Basic principles of heat transfers; conduction, convection, and radiation equations. Analysis of heat transfers in plane and cylindrical surfaces, as well as, black body. Basic knowledge on heat exchangers.

Session	Topics	
1	1. Basics of Heat transfer	
	Overviews and importance of heat transfer in real applications; Basic modes of heat	
	transfer – conduction, convection, radiation –	
2	2. Heat conduction equation	
	1, 2, 3 dimensional equations, various coordinates; Cartesian, Cylindrical, Spherical	
	coordinates, Steady and Unsteady heat conduction equations.	
3 - 4	3. Heat conduction equation	
	Solving the exact solution of heat conduction equations, Boundary and initial condition,	
	heat transfer in solid, variable thermal conductivity	
5 - 6	4. Steady heat conduction	
	Steady heat transfer in plane walls, Thermal contact resistances, Heat conduction in	
	cylinder and sphere, Critical radius of insulation	
7 - 9	5. Heat transfer from finned surfaces	
	Fin equations, Fin efficiency, Fin effectiveness, Proper length of fin	
10 - 11	6. Transient heat conduction	
	Lump system analysis, transient heat transfer in large plane walls, long cylinder and	
	sphere with spatial effects, Transient heat transfer in semi-finite solid	
12	7. External force convection	
	Physical mechanism on convection heat transfer, Nusselt number, Velocity boundary	
	layer, Thermal boundary layer, Equations of conservation, Parallel flow over flat plates,	
	Flow across cylinders and spheres, Flow across tube banks	
13	8. Internal force convection	
	Mean velocity and mean temperature, Entrance region, General thermal analysis,	
	Laminar and turbulent flows in tube	

Teaching Schedule:

14	9. Heat exchangers	
	Types of heat exchangers, Overall heat transfer coefficient, Analysis of heat exchangers,	
	Log mean temperature difference, The effectives - NTU method, Selecting heat	
	exchangers	

Material courses:

• Handout given by instructor (<u>http://www.engr.tu.ac.th/~cchainar</u>)

Reference Books:

- Cengel, Y.A. Heat transfer: A practical approach, 2nd ed., McGraw-Hill.
 Incropera, F.P., and Dewitt, D.P. Fundamentals of heat and mass transfer, 3rd ed., John Wiley.

Tentative evaluation:

20%
20%
30%
30%
100%

Evaluation

≥ 80	Α
74 - 79	B +
68 - 73	В
62 - 67	C+
56 - 61	С
50 - 55	D +
44 – 49	D
< 44	F