ME 434 REFRIGERATION AND AIR CONDITIONING

Credit: 3(3-0-6) Prerequisite: ME 332 Heat transfer

Semester 1 Year 2009

Instructor:	or: Chainarong Chaktranond	
	Room 413, Tel.(ext.) 3144,	
	E-mail address: <u>cchainar@engr.tu.ac.th</u>	
Lecture time: Tue & Thru, 9.30 – 11.00 (Room Eng. 612)		
Consulting hours:	Tues 13.30 – 16.00 or make an appointment	nt via email

Objectives: Students are expected to

- Understand basics of refrigeration and air condition systems and their operations
- Have ability to compute the cooling load
- Have ability to design and to select refrigeration and air conditioning equipments

Course Description:

Review of thermodynamics principles. Fundamental of heat and mass transfer. Theoretical and actual vapor compression cycles. Psychometrics chart. Refrigerants. Main components: compressor, condenser, evaporator, expansion valves. Refrigerants. Cooling load calculation for refrigeration and air conditioning systems. Air conditioning system design. Design of air duct and air distribution.

Session	Topics		
1	1. Introduction to refrigeration and air conditioning systems.		
	Overviews and importance of refrigeration and air conditioning system for Mechanical		
	engineer.		
2	2. Reviews of thermodynamics and heat transfer		
	1 st and 2 nd laws of thermodynamics; open – close systems; control volume; heat transfer		
	coefficient and thermal resistance in various shapes		
3 – 4	3. Vapor compression cycle		
	Theoretical and actual vapor compression cycle; Refrigeration Carnot cycle;		
	Refrigeration effect and capacity; Coefficient of performance; Limited temperature		
5	4. Psychrometry		
	Psychrometric chart; Definitions and calculations of humidity ratio and relative		
	humidity; Air and water vapor properties (Calculation & Table)		
6 – 7	5. Wetted – surface heat transfer		
	Wet surface phenomena; heat and mass transfer on wet surface of cooling coil		
8 – 10	6. Cooling and Dehumidifying coils		
	Calculation of actual cool coil; Dehumidify		
11 - 12	7. Main equipments in Refrigeration system		
	Functions and types of main equipments - Evaporator, compressor, condenser, pressure		
	reducing valve, thermostat, sight glass, drier – filter and safety equipments.		
13 – 14	8. Refrigerant		
	Types, properties and applications of refrigerants; Selecting refrigerants		
*15 – 17	9. Cooling load calculation for refrigeration system		
	Types of heat gain, cooling load and calculations; Selecting capacity of refrigeration		
	equipment.		

Teaching Schedule:

Session	Topics	
18 – 19	10. Air conditioning system	
	Objectives of air conditioning; Requirements in air conditioning design; Categories of	
	air conditioning systems; Selecting suitable air conditioning system; Thermal comfort	
20 - 24	11. Cooling load calculation for air conditioning system	
	Types of heat gain, cooling load and calculations; Selecting capacity of air conditioning	
	equipment	
25 - 26	12. Air duct design	
	Bernoulli equation; Energy equation; Equivalent round duct diameter; Friction loss;	
	minor losses; Air duct design - equal friction and static regain methods.	
27 - 28	13. Supply air distribution	
	Principles of air movement in air conditioning room; Types and functions of air	
	diffusers; Selecting diffusers.	

Material courses:

• Text book and Handout given by instructor (http://www.engr.tu.ac.th/~cchainar)

Reference Books:

- Stoecker, W.F., 1982. Refrigeration and Air Conditioning 2nd ed., McGraw-Hill.
 Dossat, R.J., 1991. Principles of Refrigeration. 4th ed., Prentice-Hall.
- 3. Edward G. Pita, 1998. Air conditioning principles and system, 3rd ed., Prentice-Hall.
- 4. Handbook of air conditioning system design, Carrier air conditioning company, McGraw-Hill
- 5. ASHARE handbooks

Grade policy:

Attendance, Quiz and Assignment	20%
Mid-term Examination (topic $1-6$)	20%
2^{nd} Examination (topic 7 – 9)	30%
Final Examination (topic 10 – 13)	30%
Total	100%

Evaluation

≥ 80	Α
74 - 79	B +
68 - 73	В
62 - 67	C+
56 - 61	C
50 - 55	D +
44 – 49	D
< 44	F

Examination schedule: Mid term 28 Jul 2009 (9.00 – 11.00) 2nd exam will be announced

Final exam 1 Oct 2009 (9.00 – 12.00)