Graduated course

ME 747 Special topics in thermal and fluids

(Introduction to computational fluid dynamics)

Credit: 3(3-0-6)

Semester 2 Year 2008

Lecturer:	Dr. Chainarong Chaktranond	
Office:	Room Eng. 413	
Phone:	3144	
E-mail:	cchainar@engr.tu.ac.th	
Lecture time:	: Monday, 13.30 – 16.30	
Lecture room: 306 Research building		
Consulting time: Make an appointment via E-mail		
Objectives:		
-	Describe the physical significance of each term in the governing	
	equations for CFD.	
-	Construct computer code to solve the CFD problem with Fortran	
	programming	
-	Quantify and analyze the numerical error in solution of the CFD	
	partial differential equations	
-	Develop finite difference discretized forms of the CFD equations.	
-	Formulate explicit & implicit algorithms for solving the Euler	
	Equation & Navier-Stokes Equations.	
-	Demonstrate verification strategies for evaluating CFD code.	

Lecture schedule

Session	Topics
1	1. Overviews of computational fluid dynamics
	 Overviews and importance of heat transfer in real applications
2 - 3	2. Introduction to Fortran programming
	- Basic commands in Fortran programming
4	3. Overviews of governing equations for flow and heat transfer
	- Elliptic, Parabolic and Hyperbolic equations
5	4. Introduction to numerical methods
	- Finite different method
	- Finite volume method
	- Finite element method
6 – 7	5. Introduction to solve engineering problems with finite-different method
	- Taylor series expansion
	- Approximatation of the second derivative
	- Initial condition and Boundary conditions
8 - 9	6. Basics of discretization methods
	- Principle of discretization method
	- Truncation error, Round-off and Discretization errors
	- Convergence for marching problems
	- Stability analysis, Von Neumann analysis
10 - 12	7. Application of numerical methods to selected model equations
	- Wave and Heat equations
	- Euler explicit and implicit methods
	- Second-order upwind method
	- Second central different method
13 – 14	8. Application of numerical methods to selected model equations (Continue)
	- Laplace's and Burges equations
	- Adam-Bashforth and Crank-Nicolson methods
	- Solve the matrices with ADI, SOR methods, and etc.
15 - 16	9. Numerical techniques to solve fluid flow problems

Materials

- Lecture note provided via homepage (http://www.engr.tu.ac.th/~cchainar)

Reference sources

- 1. Numerical recipes http://www.nr.com/oldverswitcher.html
- 2. Joel H. Ferziger (1981). Numerical methods for engineering application. John Wiley & Sons.
- 3. John C. Tannehill, Dale A. Anderson, and Richard H. Pletcher (1997). Computational fluid mechanics and heat transfer. Taylor & Francis.
- 4. John D. Anderson, JR. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.

Score:

Attendance and Quiz	10%
Project I	20%
Project II	20%
Assignment	30%
Final examination	20%
Total	100%

Evaluations

	Α	≥ 80
75 ≤	Α-	< 80
70 ≤	B +	< 75
65 ≤	В	< 70
60 ≤	В-	< 65
55 ≤	C+	< 60
50 ≤	С	< 55
45 ≤	D	< 50
45 >	F	