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Lecturer: Dr. Chainarong Chaktranond

Office: Room Eng. 413
Phone: 3144
E-mail: cchainar@engr.tu.ac.th

Lecture time: Monday, 13.30 — 16.30
Lecture room: 306 Research building/ Eng 317

Consulting time :Make an appointment via E-mail
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Descriptions

* Dynamics of body moving through a fluid medium; numerical solution of
ordinary differential equations.

* Inviscid and viscous fluid flows: numerical for solving elliptic partial differential
equations, explicit and implicit methods for solving parabolic partial
differential equations.

» Secondary flows and flow instabilities: upwind differencing and artificial
viscosity.

* Discretization methods.

* Initial and boundary condition treatments.

* Fortran programming.
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Objectives

Describe the physical significance of each term in the governing equations
for CFD.

®  Construct computer code to solve the CFD problem with Fortran
programming

® Quantify and analyze the numerical error in solution of the CFD partial
differential equations

" Develop finite difference discretized forms of the CFD equations.

" Formulate explicit & implicit algorithms for solving the Euler Equation &
Navier-Stokes Equations.

® Demonstrate verification strategies for evaluating CFD code.
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Lecture schedule

Session Topics

1 1.0verviews of computational fluid dynamics

- Overviews and importance of heat transfer in real applications

2-3 2. Introduction to Fortran programming

- Basic commands in Fortran programming

4 3. Overviews of governing equations for flow and heat transfer

-Elliptic, Parabolic and Hyperbolic equations

5 4. Introduction to numerical methods

- Finite different method, Finite volume method, Finite element method, etc.

6-7 5. Introduction to solve engineering problems with finite-different method
- Taylor series expansion, Approximation of the second derivative, Initial condition and

Boundary conditions
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Lecture schedule

8-9 6. Basics of discretization methods
-Principle of discretization method, Truncation error, Round-off and Discretization
errors, Convergence for marching problems, Stability analysis, Von Neumann

analysis

10 - 12 | 7. Application of numerical methods to selected model equations
- Wave and Heat equations, Euler explicit and implicit methods, Second-order

upwind method, Second central different method

13 — 14 | 8. Application of numerical methods to selected model equations (Continue)
- Laplace’s and Burges equations

- Adam-Bashforth and Crank-Nicolson methods

- Solve the matrices with ADI, SOR methods, and etc.

15 - 16 | 9. Numerical techniques to solve fluid flow problems
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Material sources

D Materials

Lecture note provided via homepage (www.engr.tu.ac.th/~cchainar)

(] References

- Numerical recipes (www.nr.com/oldverswitcher.html)

- Joel H. Ferziger (1981). Numerical methods for engineering application. John Wiley &

Sons.
- John C. Tannehill, Dale A. Anderson, and Richard H. Pletcher (1997). Computational

fluid mechanics and heat transfer. Taylor & Francis.

- John D. Anderson, JR. (1995). Computational fluid dynamics: The basics with

applications. McGraw-Hlill.
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Score

Attendance and Quiz
Project |

Project Il
Assignment

Final examination

Total
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10%
20%
20%
30%
20%
100%
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Evaluations

A > 80
s A - <80
70 < B+ 5
65 < B <70
60 < B - <65
55 < C+ < 60
50 < C e
45 < D <50
45 > F
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History

Faces of Fluid Mechanics

Leibniz

Archimedes -

Archimedes Newton Leibniz Bernoulli Euler
(C. 287-212 BC) (1642-1727) (1646-1716) (1667-1748) (1707-1783)

Navier Stokes Reynolds Prandtl
(1785-1836) (1819-1903) (1842-1912) (1875-1953)

Taylor
(1886-1975)
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Significance

Fluids omnipresent
Weather & climate
Vehicles: automobiles, trains, ships, and planes, etc.
Environment
Physiology and medicine
Sports & recreation

Many other examples!
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Weather & Climate

Tornadoes Thunderstorm

Tarrem Faidl ey W

.
o

E0. Lloypds\Weatherstock

Global Climate

El Nino / La Nina
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Vehicles

Aircraft Surface ships

High-speed rail Submarines
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Environment

Air pollution River hydraulics
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Physiology and Medicine

Blood pump

A BVS blood pump
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Ventricular assist device
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Water sports

racing

D dark mdng p hoography.

K chart. racing phalagraphy
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TEMPERATURE DISTRIBUTION
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Applications of CFD

Example of industrial application

NASA's cryogenic wind tunnel simulates flight
conditions for scale models--a critical tool in
designing airplanes.

Application in teaching

Fluid dynamics laboratgry
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Full and model scale

e Scales: model, and full-scale

e Selection of the model scale: governed by dimensional analysis and similarity
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Measurement szstems

e [nstrumentation
e |Load cell to measure forces and moments
e Pressure transducers
e Pitot tubes
e Hotwire anemometry
e PIV, LDV

e Data acquisition
e Serial port devices
e Desktop PC’s
e Plug-in data acquisition boards
e Data Acquisition software - Labview

e Data analysis and data reduction
e Data reduction equations
e Spectral analysis
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Hotwire

Instrumentation

Streamlines

Stagnation point

Static taps
(several, equally
spaced circumference)

| | Differential
| | manometer

Pitot tube




Data acquisition system

Hardware

Software - Labview
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Spectral analysis

Aim: To analyze the natural FFT: Converts a function from amplitude as function

unsteadiness of the separated flow, of time to amplitude as function of frequency
around a surface piercing

strut, using FFT.
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Simulation of an Convective Squall Line in Atmosphere
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Infrared Imagery Showing Squall Line ARPS

8 h Forecast at 6 km Resolution
at 12 UTC January 23, 1999.

Shown are the Composite Reflectivity
and Mean Sea-level Pressure.
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Computational Fluid Dynamics

CFD is use of computational methods for solving fluid engineering
systems, including modeling (mathematical & Physics) and numerical

methods (solvers, finite differences, and grid generations, etc.).

Rapid growth in CFD technology since advent of computer
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Modeling

Mathematical physics problem formulation of fluid engineering system

Governing equations: Navier-Stokes equations (momentum), continuity
equation, pressure Poisson equation, energy equation, ideal gas law,
combustions (chemical reaction equation), multi-phase flows(e.g.
Rayleigh equation), and turbulent models (RANS, LES, DES).

Coordinates: Cartesian, cylindrical and spherical coordinates result in

different form of governing equations

Initial conditions(initial guess of the solution) and Boundary Conditions
(no-slip wall, free-surface, zero-gradient, symmetry, velocity/pressure

inlet/outlet)

Flow conditions: Geometry approximation, domain, Reynolds Number,

and Mach Number, etc.
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Why CFD

Analytical solutions exist only for a handful of typically boring problems

Can control numerical experiments and perform sensitivity studies, some in

very ideaized settings.
Can study something that is not directly observable (black holes).
Computer solutions provide a more complete sets of data in time and space

We can perform realistic experiments on phenomena that are not possible

to reproduce in reality, e.g., the weather
Much cheaper than laboratory experiments
Much more flexible — each change of configurations, parameters

We can now use computers to DISCOVER new things (drugs, sub-atomic

particles, storm dynamics) much quicker
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Difficulties with CFD

PDE's are not well-suited for solution on computers - must approximate a
continuous system by a discrete one. One must keep in mind that the

governing equations themselves are approximations

Most physically important problems are highly nonlinear - advantage of
models is that you can examine the relative contribution of each term. But,

how will you then know if the solution is correct? Validation?!

It is impossible to represent all relevant scales in a given problem - there is
strong coupling in atmospheric flows and most CFD problems. ENERGY
TRANSFERS. (Transparency)

Most of the numerical techniques we use are inherently unstable - often we
have to beat down the instability with a hammer, resulting in degraded

solutions. We must deal with physical and computational instabilities.
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POSITIVE OUTLOOK

New schemes / algorithms

Bigger and faster computers

Faster network access

Better Desktop computers

Better programming tools and environment

Better understanding of dynamics / predictabilities

etc.
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