

ME 747 Introduction to computational fluid dynamics

Lecture 3

Overviews of governing equations for fluid flow and heat transfer

By Chainarong Chaktranond

Lecture schedule

Session	Topics		
1	1.Overviews of computational fluid dynamics		
	- Overviews and importance of heat transfer in real applications		
2 - 3	2. Introduction to Fortran programming		
	- Basic commands in Fortran programming		
4	3. Overviews of governing equations for flow and heat transfer		
	-Elliptic, Parabolic and Hyperbolic equations		
5	4. Introduction to numerical methods		
	- Finite different method, Finite volume method, Finite element method, etc.		
6 – 7	5. Introduction to solve engineering problems with finite-different method		
	- Taylor series expansion, Approximation of the second derivative, Initial condition and		
	Boundary conditions		

Contents

- Ordinary differential equations (ODEs)
- Partial differential equations (PDEs)

Ordinary differential equations (ODEs)

☐ Classification for ordinary differential equations

First order	Higher order
Single equations	System equation
Linear	Nonlinear
Initial value	Boundary value

สมการอันดับ (n th order equation)

$$y^{n} = f(x, y, y', ..., y^{n-1})$$

สามารถลดอยู่ในระบบของสมการอันดับหนึ่ง โดยนิยาม

$$y_1 = y$$

ดังนั้น

$$y'_{j} = y_{j+1}$$
 $\vec{\mathfrak{T}}$ $j = 1, 2, ..., n-1$

$$y'_n = f(x, y_1, y_2, ..., y_n)$$

Initial value problems

First-order ordinary differential equation

$$\frac{dy}{dt} = f(y,t) \qquad y(0) = y_0$$

เราต้องการหาค่า
$$y(t)$$
 สำหรับ $0 < t \le t_f$

สำหรับ numerical method ที่เวลา
$$t_{n+1} = t_n + \Delta t$$
 สำหรับ $0 \le t \le t_n$

ค่า y ณ เวลาถัดไปหาได้จาก
$$y_{n+1} = y(t_{n+1})$$

Taylors series methods

หาคำตอบที่เวลา t_{n+1} รอบคำตอบที่เวลา t_n

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2}y''_n + \frac{h^3}{6}y'''_n + \dots$$

ที่ซึ่ง $h=\Delta t$

จากสมการ

$$\frac{dy}{dt} = f(y,t) \longrightarrow \left(y'_n = f(y_n, t_n) \right)$$

ดังนั้นคำตอบสมการอันดับหนึ่ง

$$y_{n+1} = y_n + hf(y_n, t_n)$$

Equation forms

☐ Hyperbolic problems (waves):			
Quantum mechanics: Wave-function(position,time)			
☐ Elliptic (steady state) problems:			
Electrostatic or Gravitational Potential: Potential(position)			
☐ Parabolic (time-dependent) problems:			
Heat flow: Temperature(position, time)			
Diffusion: Concentration(position, time)			
Many problems combine features of above			
☐ Fluid flow: Velocity,Pressure,Density(position,time)			
☐ Elasticity: Stress,Strain(position,time)			

- ☐ Elliptic Type
- □ Parabolic Type
- **☐** Hyperbolic Type
- different mathematical and physical behaviors

Fluid flow equations

- Time : first-derivative (second-derivative for wave eqn)
- Space: first- and second-derivatives
- System of coupled equations for several variables

☐ First-order linear wave equation (advection eq.)

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

Propagation of wave with speed c

Advection of passive scalar with speed c

☐ First-order nonlinear wave equation (inviscid Burgers's equation)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

☐ Advection-diffusion equation (linear)

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \alpha \frac{\partial^2 T}{\partial x^2}$$

☐ Burger's equation (nonlinear)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Other Common PDEs

☐ Korteweg-de Vries (KdV) equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

Nonlinear dispersive wave

☐ Laplace and Poisson's equations

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) \begin{cases} f = \theta : \text{Laplace} \\ f \neq \theta : \text{Poisson} \end{cases}$$

Other Common PDEs

☐ Helmholtz equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 u = 0$$

Time-dependent harmonic waves

Propagation of acoustic waves

☐ Tricomi equation

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \theta \begin{cases} y > \theta : \text{elliptic} \\ y < \theta : \text{hyperbolic} \end{cases}$$

Mixed-type

Other Common PDEs

☐ Wave equation

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$

☐ Fourier equation (Heat equation)

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

Navier-Stokes Equations

- ☐ Navier-Stokes equation
- ☐ Primitive variables

$$\begin{cases} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \end{cases}$$

Navier-Stokes Equations

- Navier-Stokes equation
- ☐ Vorticity / stream function formulation

$$\begin{cases} \nabla^2 \psi = -\omega \\ \frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = v \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \end{cases}$$

Parabolic PDEs

- One real (double) root, one characteristic direction (typically t = const)
- The solution is marching in time (or spatially) with given initial conditions
- The solution will be modified by the boundary conditions (time-dependent, in general) during the propagation
- Any change in boundary conditions at t₁ will not affect solution at t < t₁, but will change the solution after t = t₁

General 2nd order partial differential equations

 \Box Linear second-order PDE in two independent variables (x,y), (x,t), etc.

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu + G = 0$$

A, B, C, ..., G are constant coefficients (may be generalized)

Classification
$$\begin{cases} B^2 - 4AC < \theta \text{ : elliptic} \\ B^2 - 4AC = \theta \text{ : parabolic} \\ B^2 - 4AC > \theta \text{ : hyperbolic} \end{cases}$$

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

- The classification depends only on the highest-order derivatives (independent of D, E, F, G)
- For nonlinear problems [A,B,C = f(x,y,u)],
- Physical processes are independent of coordinates
- Introduction of simpler flow categories (approximations) may change the equation type

Steady-state : parabolic → elliptic

Boundary-layer : elliptic → parabolic

☐ General form of second-order PDEs (2 variables)

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

(1) Hyperbolic PDEs (Propagation)

$$\begin{cases} \frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = 0 & \text{(first - order)} \\ \frac{\partial^2 \phi}{\partial t^2} - c^2 \frac{\partial^2 \phi}{\partial x^2} = 0 & \text{(second - order)} \end{cases}$$

☐ General form of second-order PDEs (2 variables)

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

(2) Parabolic PDEs (Time- or space-marching)

Burger's equation

$$\begin{cases} \frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = v \frac{\partial^2 \phi}{\partial x^2} \\ \frac{\partial \phi}{\partial t} = \alpha \frac{\partial^2 \phi}{\partial x^2} \end{cases}$$

Diffusion / dispersion

☐ General form of second-order PDEs (2 variables)

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

(3) Elliptic PDEs (Diffusion, equilibrium problems)

$$\begin{cases} \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \\ \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = f(x, y) \\ \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + c^2 \phi = 0 \end{cases}$$

☐ General form of second-order PDEs (2 variables)

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

(4) Mixed-type PDEs

Steady, compressible potential flow

$$(1-M^2)\frac{\partial^2 \phi}{\partial s^2} + \frac{\partial^2 \phi}{\partial n^2} = 0 \quad \begin{cases} M < 1 : \text{ subsonic} \\ M > 1 : \text{ supersonic} \end{cases}$$

☐ General form of second-order PDEs (2 variables)

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

(5) System of Coupled PDEs

Navier-Stokes Equations

$$\begin{cases}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)
\end{cases}$$

Equilibrium Problems

- Boundary Value Problems
- Elliptic PDE
- "Jury" Problem (every juror must agree on the same verdict)
- The entire solution is passed on a jury requiring satisfaction of all boundary conditions and all internal requirements
- Usually "steady-state"

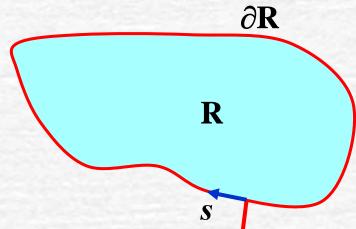
Propagation Problems

- Initial Value Problems
- Hyperbolic or Parabolic
- "Marching" problems
- Unsteady, transient, steady shock, boundary-layer (space-marching), ...
- The solution marched out from the initial state guided and modified in transient by the side boundary conditions
- Parabolic marching in certain direction, equilibrium in the other directions

Boundary and Initial Conditions

Initial conditions: starting point for propagation problems

Boundary conditions: specified on domain boundaries to provide the interior solution in computational domain



(i) Dirichlet condition: u = f on ∂R

(ii) Neumann condition:
$$\frac{\partial u}{\partial n} = f$$
 or $\frac{\partial u}{\partial s} = g$ on ∂R

Second-Order PDEs

Second-order PDE in two variables

$$Au_{xx} + Bu_{xy} + Cu_{yy} + H = 0$$

$$let \begin{cases} P = u_x \\ Q = u_y \end{cases} then \begin{cases} P_x = u_{xx} (=R), \ Q_y = u_{yy} (=T) \\ P_y = Q_x = u_{xy} (=S) \end{cases}$$

Express every derivative in terms of uxy

$$\begin{cases} dP = P_x dx + P_y dy = u_{xx} dx + u_{xy} dy \\ dQ = Q_x dx + Q_y dy = u_{xy} dx + u_{yy} dy \end{cases}$$

$$\Rightarrow u_{xx} = \frac{dP}{dx} - u_{xy} \frac{dy}{dx}; \quad u_{yy} = \frac{dQ}{dy} - u_{xy} \frac{dx}{dy}$$

Second-Order PDEs

$$Au_{xx} + Bu_{xy} + Cu_{yy} + H$$

$$= A\left(\frac{dP}{dx}\right) + C\left(\frac{dQ}{dy}\right) + H + u_{xy}\left[-A\left(\frac{dy}{dx}\right) + B - C\frac{dx}{dy}\right] = 0$$

Eliminate the dependence on partial derivatives

Choose
$$-A\left(\frac{dy}{dx}\right) + B - C\frac{dx}{dy} = 0 \Leftrightarrow A\left(\frac{dy}{dx}\right)^2 - B\left(\frac{dy}{dx}\right) + C = 0$$

then $A\left(\frac{dP}{dx}\right) + C\left(\frac{dQ}{dy}\right) + H = 0$ involves only total differentials

Characteristic Equation

Characteristic equation for second-order PDE

$$A\left(\frac{dy}{dx}\right)^{2} - B\left(\frac{dy}{dx}\right) + C = 0 \implies \frac{dy}{dx} = \frac{B \pm \sqrt{B^{2} - 4AC}}{2A}$$

Classification of second-order PDEs

Hyperbolic: $B^2 - 4AC > 0$, two real roots (characteristics)

Parabolic: $B^2 - 4AC = 0$, one real root (characteristics)

Elliptic: $B^2 - 4AC < 0$, two complex roots (cannot identify

the propagation directions)

Hyperbolic PDEs

- Two real roots, two characteristic directions
- Two propagation (marching) directions
- Domain of dependence
- Domain of influence
- (u_x,u_y,v_x,v_y) are not uniquely defined along the characteristic lines, discontinuity may occur
- Boundary conditions must be specified according to the characteristics

Elliptic PDEs

- The derivatives (u_x, u_y, v_x, v_y) can always be uniquely determined at every point in the solution domain
- No marching or propagation direction!
- Boundary conditions needed on all boundaries
- The solution will be continuous (smooth) in the entire solution domain
- Jury problem all boundary conditions must be satisfied simultaneously