Performance of Supersonic Steam Ejectors and A Simple Loss Analysis

Abstract
This paper proposed the result of studying in performance of the supersonic steam ejectors as Mach No. of primary nozzle is 2.0. In the experiments used the two types of mixing tubes are the constant and simple variable cross sections. Tests found that the simple variable mixing tube gave the higher efficiency than the other. And the appropriated distances between the primary nozzle exit to the simple variable mixing throat that is depend on its Mach No.

บทนำ

ผลจากการทดลองเป็นอุปกรณ์เพื่อความดันไล่ไปในน้ำที่มีความดันต่ำ ด้วยมิติของ ไอดันที่ผ่านกระบวนการผลิตแล้วจะมีความดันต่ำ เมื่อนำมาเหมาะสมกับอุปกรณ์จะทำให้ได้ความดันสูงขึ้นเรื่อยไปในการสร้างพลังงานสำหรับสูบทุ่นถังคงต่ำได้. โดยหลักการคือ จะได้รับน้ำ ความดันสูงไปตลอดแนวเข้าซับเพื่อกำกับกับความเร็วซึ่ง ความต่ำ น้ำจะต้องพอเหมาะสมกับอุปกรณ์เพื่อความดันต่ำไล่ไปในน้ำที่มีความดันต่ำ ด้วยมิติของ ไอดันที่ผ่านกระบวนการผลิตไปใช้งาน

งานวิจัยนี้ได้ศึกษาแสดงการพารามิเตอร์ต่างๆมีผลอย่างไรต่อสมการของสปีนอสเกนต์ นี้เพื่อให้ได้ข้อมูลเพื่อไปใช้ปรับปรุงประสิทธิภาพของตัวอุปกรณ์ให้ดีขึ้น โดยพารามิเตอร์ที่ทำการศึกษามีดังนี้คือ ค่าการสูญเสียน้ำที่ขาออกทางอุณหภูมิของน้ำ เซ็นสัญญาณปากของท่อผสมที่ต่อจุดที่สัมผัสขนานผ่านแกนทางของ น้ำเชื้อเพลิง (x/d) ดังรูปที่ 1 และมีความเร็วของน้ำจากจุดย่อม เชื้อเพลิง (M) อัตราส่วนการหนืดประมาณ (Em) ซึ่งเป็นอัตราส่วนระหว่างอัตราการไหลของน้ำเชื้อเพลิงของโพลิแมท (M) และอัตราส่วนการหนืดของโพลิแมท (Pm/Pad).

ในงานวิจัยนี้ออกแบบและทดสอบอุปกรณ์เพื่อกำกับน้ำเชื้อเพลิงตามขั้นตอนต่อมา ดังนั้นการออกแบบและ.attributed to the supersonic steam ejector. The results of the experiments showed that the simple variable mixing tube gave higher efficiency than the other. The appropriated distances between the primary nozzle exit and the simple variable mixing throat depend on its Mach No.

การวิเคราะห์ประสิทธิภาพ

![Diagram](attachment:image.png)

รูปที่ 1 ตัวประกอบของตัวอุปกรณ์
การตัดสินสุดท้ายคือ

จากกรุปที่ 3 ได้ร้อยละเม็ดของกรดมัลติไดโอน้ำที่สามารถผลิต
น้ำได้ประมาณ 80 kg/hr ที่ความพัน 10 bar สำหรับน้ำทำจาก
เด่นชงอุณหนึ่งอย่าง 1 น้ำที่ปล่อยลงที่น้ำมีความดันสูงชุดอุณหนึ่งอย่าง
8 มิติเพื่อเก็บน้ำอย่างน้อยถึงเป็น 2 ราย สามารถเปลี่ยนให้
ความตันกว่าหรือน้ำอุณหนึ่งปฏิกิริยา (primary steam) และสามารถเปลี่ยน
สามารถทำให้ผ่านค่าหรือน้ำอุณหนึ่งปฏิกิริยา (secondary steam) แต่เนื่อง
จากในกระดานทางออกจากการตัดสินดังกล่าวทำให้ความตันขยายใหญ่
ของปั๊มน้ำไม่ได้ถูกต้องกัน ดังนั้นเพื่อได้รับผลลัพธ์ที่ดีที่สุด
(pressure regulator valve) ซึ่งติดตั้งต่อจากเครื่องระบบการไหลของน้ำ
เป็นอุปกรณ์ที่ตัวนี้ได้รับแรงดันตามความตันทางด้านไถของน้ำที่ใช้
ภูมิปัญญาและสามารถปรับเปลี่ยนการไหลได้โดยสะดวก ด้วย globe
valve โดยเราจะทำค่าความตันทางด้านนี้ให้จ่ายเครื่องควบคุมอุณ
การไหลของน้ำที่เป็นแบบ ของแท้มมิเตอร์ (vortex meter)

ในการทดลองจะทำการให้ความตันที่ก่อนเข้าซีมีค่า
คงที่ตลอดการทดลอง (7.1 bar) และทำให้เครื่องบันทึกความตันของ
ของน้ำที่มีค่าต่างๆ เพื่อให้ได้ถูกต้องค่าความตันระหว่าง
ไหลปฏิกิริยากับอุณหนึ่งปฏิกิริยา (7.1, 4.73 และ 3.55) ที่ระยะ x/d ต่างๆ
(0, 5, 10 และ 15) แล้วทำการบันทึกค่าความตันทางด้านนี้
ของน้ำที่มีค่าต่างๆ ดังนั้นโดยความตันสามารถจะทำได้จาก
ความตัน ซึ่งเป็นแบบ boundon gauge ซึ่ง 0 ถึง 10 bar สำหรับฐาน
ความตันทางด้านนี้ทางปฏิกิริยา และทางออกของพัฒนาคิณิตศาสตร์
และ ช่วง -30 mm Hg ถึง 10 bar สำหรับฉนวนความตันที่ทางเข้า
ของน้ำที่มีค่าต่างๆ ซึ่งจะมีความตันที่ร้อยละ 0 น้ำหนัก ขั้นตอน
ของพักคลองคือ โอนในกระดานปฏิกิริยาและปฏิกิริยาขั้นตอนนี้
เพื่อมากินช้องที่มีความสามารถในการทำงานคิดค่าหรือน้ำที่ทำให้การปรับ
อุณหนึ่งทางด้านนี้จะมีผลถึง;k อย่างต่อไปนี้การไหลและความตัน
ด้านลายที่มอง เวลาทำการปรับท่า x/d ได้จากขนาดพัฒนา(project) ซึ่งมี
ลักษณะเป็นทางด้านที่ทำรวมที่กระดานของการที่จะมีความตันที่สูงที่สุด
กระทบอย่าง 15 มิล. ค่าของพัฒนาที่สูงเกิน ดังแสดงในกรุปที่ 4 และ
กรุปที่ 5

การทดลองจะทดลองด้านต่างๆ ต้นที่น้ำ ของระบบที่ของการ
ของน้ำที่มีปฏิกิริยาเป็นกับ mixing throat (x/d) 4 ระยะ คือที่ 0, 5, 10
และ 15 เมื่อความเร็วของของไหลปฏิกิริยาที่ออกจากเลขช็อมีค่าเท่ากับ
ผลการทดลอง

ในการทดลองนี้จะนำแบบการนำเสนอออกเป็น 2 ส่วน คือ ส่วนแรก จัดแสดงผลการทดสอบของสดมี่อียเซอร์ที่ใช้กับแบบเปลี่ยนแปลงในหัวที่ผนังหนา และส่วนที่สองเป็นการนำเสนอผลการทดลองของสดมี่อียเซอร์ที่ใช้กับแบบเปลี่ยนแปลงในพื้นที่หน้าตัดเดียวกัน โดยในตอนที่จะนำเสนอการปรับเปลี่ยนประสิทธิภาพที่ได้จากการทดลองของพื้นที่

จากการศึกษาของ Em ที่มีต่อประสิทธิภาพของสดมี่อียเซอร์ พบว่าประสิทธิภาพจะปรับขึ้นตามที่ Em เมื่อ Em มีต่อกันประสิทธิภาพของสดมี่อียเซอร์ที่จะมีมากขึ้น โดยที่มี P_{in}/P_{out} = 7.1 ได้ประสิทธิภาพสูงสุดเพราะเป็นเอกสารที่ P_{in}/P_{out}สอดคล้องกับเลข มี 2 ทำให้เกิดการเกิดพลังงานในระหว่างการผสม ดังรูปที่ 7

![Graph](image)

ปริมาณก็เห็นประสิทธิภาพที่ P_{in}/P_{out} ต่างๆ ที่ M = 2 วัด Em = 5

![Graph](image)

ปริมาณก็เห็นประสิทธิภาพที่ P_{in}/P_{out} ต่างๆ ที่ M = 2 วัด Em = 5

ตารางที่ 1 แสดงลิตรที่ทำการทดสอบสดมี่อียเซอร์

<table>
<thead>
<tr>
<th>Mach No.</th>
<th>P_{in}/P_{out}</th>
<th>x/d</th>
<th>Em</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.1</td>
<td>0</td>
<td>0-0.7</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.55</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.55</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

เมื่อสูดของ x/d ที่มีต่อประสิทธิภาพของสดมี่อียเซอร์พบว่า ระยะที่ต่างๆ จะได้ประสิทธิภาพไม่เท่ากัน ดังรูปที่ 8 ซึ่งเป็นเกียวกับ x/d 4 ระยะ หากประสิทธิภาพที่ได้มีการเปลี่ยนแปลงสูงสุดอยู่มาก ในช่วงระยะ x/d = 0 ถึง x/d = 10 และจะเปลี่ยนแปลงอย่างน้อยใน ระยะระหว่าง x/d = 10 ถึง 15 ซึ่งเป็นระยะที่อียเซอร์เดิมจากความกว้าง สูงของของไปปรับปรุงที่สมบูรณ์และ การทดลองพบว่าน้อยของ P_{in}/P_{out}
ณที่ 9 ประสิทธิภาพของพื้นผิวอุดหนุนที่ใช้ผสมเมมเบรนที่เป็นแบบเกลียวที่หน้าตัดคงที่ M=2

เมื่อเราทราบประสิทธิภาพที่ได้จากข้อมูลการทดสอบท่อนผสมแบบเมมเบรนแบบเกลียวที่หน้าตัดคงที่ M=2 พบว่าผสมเมมเบรนแบบเกลียวที่หน้าตัดคงที่ M=2 มีประสิทธิภาพในการขับเคลื่อนสารพื้นผิวอุดหนุนที่มีค่าประสิทธิภาพประมาณ 20% โดยการทดสอบจะทำให้เกิดผลตามแบบมีขนาดความยาวที่เท่ากัน

หน้าตัดอย่างง่ายได้ประสิทธิภาพสูงสุดที่ P_{o,\alpha} = 7.1 ซึ่งให้ค่าประสิทธิภาพตามท่อนผสมที่หน้าตัดคงที่ M=2 แต่ประสิทธิภาพที่ได้จากท่อนผสมที่หน้าตัดคงที่ M=2 ได้ประสิทธิภาพสูงสุดที่ P_{o,\alpha} = 4.73 ดังที่ปรากฏที่ 9 ทั้งนี้เนื่องจากผลกระทบของการเปลี่ยนแปลงพื้นที่หน้าตัดเป็นลักษณะลงลด (contraction) จะช่วยให้ไหลด้วยถูกลงได้เพื่อให้ความเร็วขึ้น แต่เมื่อความเร็วขึ้นไปเพียงพอจะทำให้เกิดการเปลี่ยนแปลงพื้นที่หน้าตัดที่ไม่เหมาะสมกับเมมเบรน หรือความสูญเสีย (loss) น้อยลงตามอัตรา ซึ่งสอดคล้องกับที่ได้จากภาพที่ 7 ซึ่งเมื่อ M=2 ประสิทธิภาพของพื้นผิวอุดหนุน หรือวิธีทำได้ว่า การที่ M=2 มีค่าที่เหมาะสมในการไหลด้วยแบบมีขนาดของไหลคุณภูมิได้มากหน่อย ซึ่งในการทดลองที่หน้าตัดคงที่ M=2 แนวที่จะทำให้ค่าความเร็วขึ้นไปเพียงพอเพื่อให้ประสิทธิภาพสูงสุดมีค่าลดลง ทำให้แสดงค่าความเร็วระหว่างที่พื้นผิวอุดหนุนนั้นเป็นไปได้ตามแบบผสม ทำให้ค่าความเร็วจะยิ่งขึ้นไปเมื่อมีการเปลี่ยนแปลง

เนื่องจากในการทำวิจัยในแบบมาตรฐานการเปลี่ยนแปลงของความดันแต่ละระดับความยาวของท่อนผสมได้ค้นพบว่าต้นทุนที่สำรองจะขึ้นมาเมื่อความสูญเสียที่เกิดขึ้นในท่อนผสม

ในการวิเคราะห์ประสิทธิภาพของพื้นผิวอุดหนุนสามารถพิจารณาส่วนประกอบต่างๆ ที่ทำให้ประสิทธิภาพมีค่าลดลง หรืออยู่ในรูปแบบค่าความสูญเสีย (loss) สำหรับผสมเมมเบรนแบบเกลียวที่หน้าตัดคงที่สามารถพิจารณาในรูปการสูญเสียแบบบางๆ โดยแบ่งการสูญเสียก็คิดได้จาก 3 ส่วนหลัก ส่วนแรกเป็นการสูญเสียเนื่องจากบริเวณช่องของแรงดึง ซึ่งทำให้การสูญเสียเนื่องจากไหลคดี้ได้มาจากความต้านทาน ซึ่งส่วนที่ 2 เป็นการสูญเสียเนื่องจากไหลผ่านบริเวณที่มีพื้นผิวอุดหนุน เป็นสูญเสียและมีความเสียหายผ่าน เมื่อพิจารณาการสูญเสียที่เกิดขึ้นจากส่วนนั้น จึงได้ค่าที่หน้าตัดคงที่ M=2 ตรวจสอบได้ว่ามีความเร็วขึ้นไปกับเมมเบรนที่หน้าตัดคงที่ M=2 ผลกระทบของความเร็วขึ้นไปกับเมมเบรนสูญเสีย ซึ่งเร็วขึ้นเนื่องจากมีความแตกต่างของความเร็วขึ้นมาทำให้เกิดการเปลี่ยนแปลงของอนุรดูยิ สามารถ (4) ของ Papamoschou [4] ซึ่งคำนวณจากปริมาณที่สูงของไหลอยู่ในเฉพาะ

\[\frac{dS_1}{dx} \approx \frac{\tau_{bl}}{T_{L2}} \left[T_{avg} \Delta U + C_p \left(\frac{\Delta T}{T_{avg}} \right)^2 \right] \]

และจะได้

\[\psi = \exp\left(\frac{S_{12}}{m_{12} R_{12}} \right) \]

หรือ

\[\psi = \frac{P_{o}}{P_{oi}} \]

โดยที่

\[S_{12} = S_1 + S_2 \]

\[R_{12} = \left(\frac{m_1 R_1 + m_2 R_2}{m_1 + m_2} \right) \]

ประกอบเปลี่ยนแปลงของท่อนที่สูงขึ้นอาจส่งผลให้ทางการพิจารณา (3) แทนที่จะทำการวัดค่าความต้าน (\(\psi \)) ทำให้สามารถหาค่าความต้านในแต่ละแบบไม่ได้
โดย Brown และ Roshko's (1974) ได้ให้ค่าประมาณสำหรับ
ขนาดความเค้นนุ่มนุ่มสูงเป็นสี่ซึ่งนุ่มไม่สามารถถูกจินตนาการในแบบทฤษฎีที่คุณหมายถึงและความเร็วของท่อของการ และ
เจาะ m ค่า และประมาณได้ว่า \(T_{db} \approx T_{max} \) ดังนั้น
\[t_{max} = \frac{c_{p} \alpha_{g} (U')^{2} \theta_{u}}{v_{c}} f(Mc) \] (5)
โดยที่
\[f(Mc) \approx 0.25 + 0.75e^{-Mc^{2}} \]
เนื่องจากค่า convective velocity \(v_{c} \) ซึ่งเป็นความเร็วที่
สมดุลกับความเร็วของกลุ่มอากาศจะได้จาก [5]
\[v_{c} = U_{1} - (Mc_{1})^{2} \] (6)
โดยที่
\[Mc_{1} = \frac{dMc}{dU_{1} - dU_{2}} \]
\[Mc = \frac{U_{1} - U_{2}}{a_{1} + a_{2}} \]
\[dMc = 1.5Mc - 0.4 \] เมื่อ \(Mc \) 0.27
ซึ่ง
\[Mc = \text{convective Mach No.} \]
\[a = \text{ความเร็วเฉลี่ย} \]

แต่ตามการ (4) เป็นการประมาณที่สามารถที่ไม่มีผลลัพธ์สูง
ซึ่งเป็นความชี้ลักษณะความสามารถไม่ผลิตท้องถิ่นแต่ยังจะทำให้เกิดผล
ข้อซึ่งเป็นสาเหตุทำให้เกิดความสูงเสียงความคัน [8]

การคำนวณความเสียงแปลงภายนอกในส่วนของท่อผสม
เมื่อตัว \(P_{1}, T_{1}, \text{ และ } \gamma \) จะสามารถคำนวณได้ในทางที่เป็น
1. การไหลแบบคงที่
2. ความเร็วของการไหลจานตลอดหน้าตัดนั้นๆ
3. แนวกระทบต่ำวิศวกรรม, \(\Phi_{fl} = 0 \)
4. เป็นการไหลแบบยิงباتิด, \(\theta = 0 \)
5. \(W_{shear} = W_{other} = 0 \)
6. \(W_{s} = 0 \)
7. ไม่ติดตั้งที่เกิดจากแรงโน้มถ่วง

จะได้สมการการไหลของไหลแบบยิงการได้มาเพื่อที่ให้มีสามารถ
ที่จะสมบูรณ์จัดความเสียงที่เนื่องจากการผสมที่จะวัดสุ่มโดยใช้
ให้ \(\gamma = 76.2 \times 10^{-4} \) [7] จาก Moody chart \(\tilde{f} = 0.0175 \)
เพราะนั้นในการที่จะตัดทรงก็จะจากส่วนของท่อผสม

\[P_{01} = \frac{M_{1}}{M_{4}} \left[2 + (\gamma - l) M_{3}^{2} \right]^{2} \] (7)

การคำนวณค่าความคันสูงเสียงภายในเดิมเพิ่มช่อง
สมดุลที่เป็น
1. เป็นระบบการของโลหะติด \(T_{1} = T_{2} \)
2. ไม่เกิดการแยกช่องของไหลและไม่เกิดการยุบแน่น
3. การไหลแบบพันธุ์ที่ความเร็วของไหล
แยกออกตลอดหน้าตัด
4. ไม่เกิดจุดช่องการไหล
5. การไหลแบบคงที่
6. กว้างของอิฐการไหลโดยรวม
7. ไม่เกิดการสูญเสียที่ไหล

สมการการไหลเพิ่มเติมเพิ่มช่องที่มีความเสียหายโดยมีการ
เปลี่ยนแปลงค่าของมุมและค้นที่ลดลงที่มีตัวแปลงเปรียบเทียบ

\[\frac{dM^{2}}{M^{2} dx} = -\frac{2\phi}{1 - M^{2}} \frac{dA}{A} + \frac{\gamma_{M}}{2} \phi \left(\frac{4f}{D} \right) \] (8)
โดยที่
\[\phi = l + \frac{\gamma - 1}{2} \]

\[A(x) = \frac{\pi}{4}(a + bx)^{2} \]

จากสมการความคันในของมุม \(\theta_{s} = \theta_{s} \) ดังนั้น

\[\frac{P_{2}}{P_{1}} = \frac{A_{2} M^{2}_{4}}{A_{1} M^{2}_{3}} \left(\frac{T_{3}}{T_{4}} \right) \] (9)

\[U_{s} = M_{s}(\gamma RT) \] (10)

สำหรับความคันสูงเสียงที่เกิดขึ้นในส่วนที่ต่อและส่วนที่สาม
จะเกิดในที่ของไหลที่ไหลเข้าไปในท่อที่มีคืบพื้นที่มีความเสียหาย
เนื่องจากผิวของท่อผสมที่มีที่ก้าวหน้าตัดที่ [8] และที่ก้าวหน้าตัด
เพิ่มขึ้น [9] ตามลำดับ และเมื่อพิจารณาความสูงเสียงที่เกิดขึ้น
จากที่เสียพื้นที่จะเห็นว่า ความสูงเสียงเสียงส่วนใหญ่จะเกิดจากส่วนแรก
มากที่สุด ดังรูปที่ 12

และสำหรับท่อผสมที่มีพื้นที่หน้าตัดดังกล่าวจะพิจารณาค่า
ความสูงเสียงที่เกิดขึ้นในที่ของผสมส่วนที่ทำให้ความสูงเสียง
โดยที่จะเกิดขึ้นในส่วนนี้

จากแบบจำลองการสูงเสียงอย่างที่เกิดขึ้นในแต่ละส่วนของ
ท่อผสมที่เกิดเสียงต่อจะทำให้เรารู้จักขั้นตอนแบบที่จะเกิดขึ้นและ
แบบที่เกิดเสียงที่จะเกิดขึ้นในที่เกิดขึ้นอย่างความสูงเสียงส่วน
ใหญ่จะเกิดขึ้นที่บริเวณส่วนมาก ดังรูปที่ 12 ซึ่งเป็นส่วนช่วงของไหลที่
สูงซึ่งแบบความเร็วต่ำที่มากขึ้นเข้ามาผสมกัน โดยที่สามารถที่
คำนวณความคันสูงเสียงที่เกิดขึ้นหลังจากผ่านบริเวณนี้จะได้จาก
สมการ (4) ถึง (6) และจากสมการที่ (5) พบว่า \(t_{max} \) เป็นพืชพื้นที่
ความเร็วของไหลที่ต่อ
ตั้งแต่การสูญเสียที่มีความเร็ว
แตกต่างกันมากทำให้ทำให้ได้ \(t_{max} \) มากขึ้นตาม และจากสมการที่
 grafik.png

จากกราฟที่ 12 แสดงความสุญเสียที่เกิดขึ้นในแต่ละส่วน

ส่วนรัดและความสุญเสียที่เกิดขึ้นในส่วนที่ 2 และ 3 จะมีค่าน้อยลงตามลำดับถ้าถูกกับส่วนแรก ส่วนที่ 2 และ 3 ความสุญเสียเป็นความสุญเสียเล็กน้อยจากความสุญเสียที่ใหญ่ โดยค่าความสุญเสียสิ้นเปลืองของก๊าซจะมีความเร็วขึ้นแรงดึงดัน
ดังนั้นเมื่อ E_m มากขึ้นความรัศมีส่วนที่ก๊าซ
ให้ความสุญเสียก็จะเพิ่มขึ้นตาม แต่เมื่อรวมของความสุญเสียจากทุกส่วนแล้วประสิทธิภาพจะมีค่ามากขึ้นเมื่อ E_m มีค่ามากกัน

นอกจากค่าตัวแปรที่น่าสนใจแล้วประสิทธิภาพของตัวแปรในแต่ละส่วนจะอยู่ในส่วนที่ 4 เมื่อ E_m มีค่ามากกัน

สรุป

งานนี้เป็นการสรุปได้ว่าค่า x/d มีผลต่อประสิทธิภาพการผสมกันของไหล ส่วนรัดจะมีอิทธิพลที่ใช้กับแบบพื้นที่หน้าต่างเปลี่ยนแปลงที่ x/d = 5 เมื่อ P_o/P_d = 7.1 จะให้ประสิทธิภาพสูงสุด
และเมื่อเรียบเทียบประสิทธิภาพระหว่างแบบพื้นที่หน้าต่างเปลี่ยนแปลงที่ x/d = 5 จะได้ประสิทธิภาพสูงสุด แต่เมื่อเรียบเทียบประสิทธิภาพระหว่างแบบพื้นที่หน้าต่างที่ x/d = 4.73 จะได้ภาพสูงสุด

จากระบบควบคุมด้วยแบบจำลองของความสุญเสียพบว่าค่าความสุญเสียส่วนใหญ่น่าจะเกิดขึ้นในส่วนเริ่มต้นของการผสมกันระหว่างของไหลที่ซึ่งมีความเร็วขึ้นพื้นที่มากกัน

กิจกรรมประสบการณ์

ผู้เขียนขอขอบพระคุณดร.กฤษณ์และพานณาได้ทางานที่ปรึกษา
ให้ได้มีประสบการณ์ทางานในการเรียนรู้ที่นี้ ขอขอบพระคุณ
ดร.กฤษณ์ มุกธิราภรณ์ อาจารย์ประจำภาควิชาภูริชีวิทยาเครื่องกล และ
ผู้ช่วยศาสตราจารย์ ที่ได้ให้ข้อมูลที่น่าสนใจ และ