The 4th International Symposium on Engineering, Energy and Environment

Organizers
Faculty of Engineering, Thammasat University, Thailand
Nagaoka University of Technology, Japan
Saitama University, Japan
Tokyo Institute of Technology, Japan

Co-organizers
Hiroshima University, Japan
Toyohashi University, Japan
Sirindhorn Institute of Technology, Thailand
Faculty of Science and Technology, Thammasat University, Thailand

November 8 - 10, 2015
Learning Resort, Thammasat University, Pattaya Campus, Chonburi,
Symposium Background

The Fourth International Symposium on Engineering, Energy and Environment (4th ISEEE) is aimed at finding approaches and ideas toward an important question: “How can engineering research and practice help to create a sustainable society?” It serves as a forum for the presentation of technological advances and stimulating ideas to answer this challenging question. ISEEE 2015 is the fourth in the series which has been held since 2008. This year the symposium will be held in Pattaya, Thailand. The 2015 symposium will feature plenary talks by renowned speakers and parallel sessions which provide a platform for knowledge transfer and exchange.
COMMITTEE

GENERAL CHAIR
Associate Professor Prapat Wangskarn
Thammasat University, Thailand

INTERNATIONAL ORGANIZING COMMITTEE
Professor Hidetoshi Sekiguchi
Tokyo Institute of Technology, Japan
Professor Hiroshi Mutsuyoshi
Saitama University, Japan
Professor Phadungsak Rattanadecho
Thammasat University, Thailand
Professor Yoshiharu Mutoh
Nagaoka University of Technology, Japan

INTERNATIONAL ADVISORY COMMITTEE
Assistant Professor Ali Cheshmehzangi
The University of Nottingham Ningbo China, China
Professor Chongrak Polprasert
Thammasat University, Thailand
Professor Gethin Wyn Roberts
The University of Nottingham Ningbo China, China
Professor Hidetoshi Sekiguchi
Tokyo Institute of Technology, Japan
Professor Hiroshi Katsuchi
Yokohama National University, Japan
Professor Kambiz Vafai
University of California, Riverside USA
Professor Kikuo Kishimoto
Tokyo Institute of Technology, Japan
Professor Kunio Watanabe
Saitama University, Japan
Professor Lee Chew Ging
The University of Nottingham Malaysia Campus, Malaysia
Professor Masato Aketagawa
Nagaoka University of Technology, Japan
Associate Professor Krittiya Lertpocsombut
Thammasat University, Thailand
Associate Professor Montalee Sasananan
Thammasat University, Thailand
Associate Professor Thawatchai Onjun
Thammasat University, Thailand
Assistant Professor Dusit Athinuwat
Thammasat University, Thailand

This is an unofficial proceeding; The official one will available online at http://iseee.engr.tu.ac.th/Symposium.php on November, 16th 2015
The 4th International Symposium on Engineering, Energy and Environment
8-10 November 2015, Thammasat University, Pattaya Campus, Thailand

PROGRAM COMMITTEE

Prof. Akinori Nishihara
Prof. Atsuo Dawamura
Prof. Aya Kojima
Prof. Chih-Hsiang Liao
Prof. Finn Arve Aagesen
Prof. Hiroaki Furumai
Prof. Hiroshi Takami
Prof. Hiroyuki Tomina
Prof. Hsiu-Ping Yueh
Prof. Jy Wu
Prof. Kambiz Vafai
Prof. Kazushi Sano
Prof. Larry Cooperman
Assoc. Prof. Masanori Yamada
Prof. Masao Murota
Prof. Masato Aketagawa
Assoc. Prof. Masayuki Mukunoki
Prof. Masato Saitoh
Assoc. Prof. Ryuichi Egashira
Prof. Shankar Mahalingam
Prof. Shin Morishita
Assoc. Prof. Shinya Hanaoka
Prof. Weijane Lin National
Prof. Yusuke Morita
Asst.Prof. Bunyong Rungroungdouyboon
Assoc. Prof. Chanathip Namprempre
Asst.Prof. Apiwat Muttmara
Asst.Prof. Malee Santikunaporn
Assoc. Prof. Nakhorn Pooyarodom
Assoc. Prof. Nurak Grisdanurak
Prof. Chongrak Polprasert
Dr. Nutthapon Tanthanuch
Dr. Patcharaporn Thitiwongsawet
Assoc.Prof. Perapong Tekasakul
Asst.Prof. Phairat Usuhararatana
Assoc.Prof. Pichai Aree
Prof. Somchai Wongwises
Prof. Somchart Chantaisiriwan
Prof. Somchart Soponromnairit
Asst. Prof. Somsak Vongpradubchai
Prof. Surin Pongjaroen
Assoc.Prof. Supachai Surapunt
Prof. Tanongkiat Kiatsiriroat
assoc.Prof. Thira Jearsiripongkul
Asst.Prof. Tippabust Eksangsi
Assoc.Prof. Tritos Laosirithongthong
Assoc.Prof. Virote Boonyapinyo
Assoc.Prof. Wanchai Pijitrojana
Asst.Prof. Wanwisa Skolpap
Asst.Prof. Watit Pakdee

Tokyo Institute of Technology, Japan
Yokohama National University, Japan
Saitama University, Japan
Chia Nan University of Pharmacy and Science, Taiwan
Norwegian University of Science and technology, Norway
University of Tokyo, Japan
Shibaura Institute of Technology, Japan
Kagawa University, Japan
National Taiwan University, Taiwan
University of North Carolina at Charlotte, USA
University of California, Riverside, USA
Nagaoka University of Technology
University of California, Irvine, USA
Kyushu University, Japan
Tokyo Institute of Technology, Japan
Nagaoka University of Technology, Japan
Kyoto University, Japan
Saitama University, Japan
Tokyo Institute of Technology, Japan
University of California, Riverside, USA
Yokohama National University, Japan
Tokyo Institute of Technology, Japan
Thammasat University, Thailand
King Mongkut’s University of Technology Thonburi, Thailand
Thammasat University, Thailand
King Mongkut’s University of Technology Thonburi, Thailand
Thammasat University, Thailand
King Mongkut’s University of Technology Thonburi, Thailand
Thammasat University, Thailand
Thammasat University, Thailand
Chiangmai University, Thailand
Thammasat University, Thailand
CONFERENCE TOPICS

Agricultural and food engineering
Biomedical engineering and engineering in medicine
Chemical processing
Diagnostic and monitoring System
Digital technology
Engineering and education
Environmental technology and management
Manufacturing and design
Materials engineering
Productivity improvement
Renewable energy and energy management
Resilient engineering
(Natural disaster, Infrastructure, Transportation, etc.)
Transportation and logistics
Other
CONTENT

Agricultural and food engineering

- Adhesive Xyloglucan-Bacterial Cellulose Pulp Film for Topical Application ... 3
 Saranyou Oontawee, Pattarapa Jittavisuttiwong, Chanan Phonprapai, Porntip Chaimanee
- Aggregate Production Planning for Germinated Brown Rice with Demand under Uncertainty 8
 Lakkana Ruekkasaema, Montalee Sasananana
- Bacillus subtilis TU-034 Enhance GABA Accumulation in Germinated Organic Brown Rice and Against Bacterial Leaf Streak Disease .. 14
 Dusit Athinuwat, Nipaporn Doungkaew, Wilawan Chuaboon

Biomedical engineering and engineering in medicine

- Guidelines to Developing Design For Sustainability for Senior Citizens in Thai Society .. 61
 Warawoot Chuangchai, Kesorn Suwanprasert
- A New Approach to Improve The Performance of a Two-Player Board Game using P300-based Brain-Computer Interface .. 65
 Jakawal Ongthongkun, Wannisa Anurat, Thanawat Charoenpuangkaew and Chantri Polprasert
- An Experimental Analysis of Heat Transfer in Liver Tissue during Microwave Ablation ... 71
 using Single and Double Slot Antenna ...
 S. Pongpakpien, S. Wongpradubhai, P. Keangin, P.Rattanadecho
- Biofeedback for gait rehabilitation based on Gait pattern variability ... 78
 Narintra Junchay, Bunyong Rungroungdouyboon, Supachai Vorapojpisut
- Assessment of Skin Surface by Acoustic Impedance Microscope ... 85
 Daichi Suzuki, Agus Indra Gunawan, Sachiko Yoshida, Naohiro Hozumi, Yuki Ogura, Kazuto Kobayashi
- Quantitative evaluation of cell using acoustic impedance microscope ... 90
 Kenta Takahashi, Agus Indra Gunawan, Sachiko Yoshida, Naohiro Hozumi, Kazuto Kobayashi
- Brain and Human Body Temperature Simulation of Cardiac Arrest Patient Using Finite Element Method 96
 Woradeth Arunlertratsamee, Wiroj Limtrakarn
Chemical processing

- Behaviors of binary CH4-THF hydrate formation using THF hydrate ... 105
 Yuichi Tsuchid, Satoshi Kodama, Hidetoshi Sekiguchi
- Separation of Model Petroleum Heavy Fraction Solvent Extraction .. 110
 Hiroaki Habaki, Tomonori Masuda, Ryuichi Egashira
- Estimated Binary Mixture Flash Point from Component Structures ... 116
 Satok Chaikunchuensakun
- Improved Performance of Mo-V-Te-Nb-Oxide Catalyst for the Selective Oxidation of Propane to Acrylic Acid ... 122
 Yoon Sik Park, Sang Seup Kum, Sang Heup Moon, Satoshi Kodama, Hidetoshi Sekiguchi
- Protein Leaching From Films of SDS-Treated Natural Rubber Latex ... 128
 Adisara Yoooyang and Panu Danwanichakul
- Modification of Cellulose Acetate Membrane for Seawater Treatment ... 134
 Nittaya Tancharoen and Tippabust Eksangsri

Diagnostic and monitoring System

- The Development of Leakage Current Measurement System for High Voltage Equipment 143
 P. Chorphaka, T. Nutthaphong
- Development of Space Charge Measurement Equipment for HVDC Cables -Study on Pulse Voltage Waveform- .. 150
 Masahiko Hori, Naohiro Hozumi
- Development of Strain-Corrosion Sensor ... 157
 Kenichiro Imafuku, Nobuaki Otsuki
- Impact of climate change on annual rainfall over Eastern River Basin in Thailand: a warning signal for future industrial water supply ... 163
 Uruya Weesakul and Kwanchanok Oonta-on

Digital technology

- Modeling and Simulation Energy Efficient VM scheduling for large-scale Cloud Datacenter 171
 Chotika Banditphat, Sathaporn Puengpo, Supakit Prueksaaroon
- On the Design and Implementation of Array Codes in Distributed Data Storage 177
 Phisan Kaeowprapha, Nattakan Puttarak
- Automatic Detection of Repressed Anger from Text Messages .. 185
 Hitoshi Obata, Daisuke Nagashima, Takashi Yukawa

Engineering and education

- An Internet-based Remote Switching Software Development using Cloud-based and Rapid Development Tools ... 193
 Piya Techateerawat
- Customized Android E-learning Implementation .. 199
 Watchara Amasiri, Sasan Lerdmantawat and Dahmmaet Bunnjaweht
- Effects of Electrode Position Respecting with Ground-Wire Positions on Efficiency of Hot-Air Drying Cooperating with Electric fields .. 206
 Duangrudee Chutrakul, and Chainarong Chakranond
- A Design and Implementation of a Low Cost Sine Wave Generator using a DDS Module 213
 Patid Jitjongruck and Dahmmaet Bunnjaweht
- Microcontroller Based Multimedia Application Development: A glimpse of Internet of Things 219
 Mahesh Kumar Sharma, Suresh Mokawat, Nepbhorn Leeprechanon and Satish Kumar Raib
- Time Study of UV grafting Poly (N-isopropylacrylamide-co-acrylamide) onto Polystyrene Surface for Tissue Culture Engineering ... 226
 Aye Yu Yu Swe, Kanokaon Benchaprathanphorn, Kwanchanok Viravaidya-Pasuwat and Wanwipa Siriwatwechakul
Gait Analysis Plates Design .. 232
Jakkrapun Chuanasa, Parit Wongphaet, and Prakarnkiat Youngkong

Environmental technology and management

Air Quality Model as a Management Tool: Case Study of a Starch Factory in Thailand 239
Sukkasem, P., Karucht, S., and Chuerusawan, N.

Development of Tray Biofilter for Treating Wastewater Odor from Pig Farm 247
Ratkhaissong, A., Karucht, S., and Potivichayanon, S.

Performance comparison vetiver grass roots to reduce estrogen in the water 254
Poramin Kumchoo and Krittiya Lertpocsombut

Production and Cost Benefit Analysis of Biodegradable Poly(lactic acid)-Epoxidized Palm Oil Blend/ Graphene Nanocomposite .. 260
Sorawit Duangsripat and Chongrak Polprasert

Concrete waste utilization for coarse aggregation replacement in concrete mixed design 266.
Thaniya Kaosolb, Surangkana Trangkanont

Eco-efficiency and Environmental Impact Evaluation of Motorcycle Production Plant in Thailand. 272
Taratip Chaisomkoon and Chongrak Polprasert

Diversification of Eco-services in Wetlands: E. coli - Rotifer Interaction under the Presence of Emergent Macrophyte .. 278
Hussnain Mukhtar, Muhammad Saleem Kalhoro

Ecological Engineering for Surface Water Quality Improvement: Determination of Optimal Emergent Macrophyte (Nymphaea) Coverage in Wetland Mesocosm 284
Joel H. Kamanda, Hussnain Mukhtar*, Muhammad Saleem Kalhoro

Socio-Eco-Efficiency Indicator (Sustainability Score) for Business Sustainability Development 290.
Suvapak Taechasriprasert, Harnpon Phungrussami, Phairat Usobharatana

Effect of Mist Injection on Particle Separation Performance of Cyclone Separator 296
Hiroki Takahashi, Satoshi Kodama, Hidetoshi Sekiguchi

Life Cycle Assessment of Thermal Insulation Product from Agricultural waste 302
Teerapong Churam, Phairat Usobharatana, Harmpoon Phungrussami

Silver Nanostructure for Detection of Hydrogen Sulphide Gas 309
Somphon Tripan, Rungroj Maolanon, Paiboon Sreearunothai

The design of two-stage cyclones separates the icing powder by using particle tracing flow analysis ... 315
Yotsakorn Pratumwal, Wiroj Limtrakarn

Manufacturing and design

The Study of Electrical discharge machining on Lead Zirconate Titanate (PZT) 325
Apiwat Muttamara, Siwawong Phuphet, Patittar Nakwong

A Study on Mechanism of Smoothing Surface Creation by Diamond Burnishing Process 326
Hidetake Tanaka, Takaya Takahashi

Concurrent measurement method of spindle error motions using concentric circle grating and frequency modulation interferometers ... 332
Masato Aketagawa, Muhummad Madden, Yoshitaka Maeda, Kohsei Terao, Shigemitsu Koga,
Takashi Sawada, Michitaka Kawada and Eiki Okuyama

Comparison of Fuzzy Inference System and Artificial Neural Network for Process Control 338
Prasert Aengchuan, Busaba Phruksaphanrat

Estimation of Bending Characteristics of Creased White-Coated Paperboard subjected to In-Plane Compressive Load using V-Block Fixtures .. 344
Shigeru Nagasawa, Tran Xuan Quyet

Double Scale Measurements for Large Scale Surface Profile Measurement 350
Eiki OKUYAMA and Masayuki ITO

Design of Stress Distribution in 2D Beam using FEM .. 352
Aurasu Wuttiworawanit, Nutthanicha Kanhasiri, Attaporn Wisessint
Materials engineering

- Investigation into Effect of Mineral Admixture on Delayed Ettringite Formation
 Shingo Asamoto, Kohki Murao, Isao Kurashigec and Anura Nanayakkara .. 359

- Development of internal hydrophobic cementitious material
 Haruka Furuta, Yao Luan, Shingo Asamoto, Taiju Yoneda .. 365

- Density Functional Theory Simulations of Aluminium Alkoxide and Fluoride
 A. Jomphoak, T. Onjun, K. Hongo, R. Maezono ... 371

- Influence of Crack Closure on Fretting Fatigue Strength of 316L Stainless Steel
 N. Noraphaihipaksa, C. Kanchanomai and Y. Mutoh .. 376

- Experimental study on moisture absorption behavior of cracked mortar
 Yao Luan .. 384

- The Effect of Sulfuric Acid Solution on Electrical and Mechanical Properties of CFRTP Material using in Automotive Structural Application
 Patarapon Palungvachira, Masatoshi Kubouchi, Yoshihiko Aroa, Shinsuke Katayama, Hirozuki Ogata 393

- Effect of Heat Treatments on Microstructures and Mechanical Properties of Gas-Metal-Arc-Welded SKD 61 Tool Steel
 Teerayut Kanchanasangtong, Supamard Sujatanond and Supachai Surapunt .. 399

- Optimization of Surface Roughness in EDM Using Artificial Neural Network and Ant Colony Optimization
 Wuthichai Wongthatsaneekorn, Jurapun Tongkun, Jirawan Kloypanyan ... 407

- An Experiment Study of Crack Repairing Using Yeast Fungus Biogrout
 Jie Fang, Hiroshi Mutsuyoshi, Yao Luan .. 414

- Notch fatigue behavior of polypropylene resin
 Yuichi Otsuka, Sarita Morakul, Montri Sangsuriyun, Yukio Miyashita, Yoshiharu Mutoh 420

- Fatigue behavior of laser welded dissimilar stainless steels joint at room and elevated temperature
 Hideto Irah, Yu Narita, Yuki Izawa and Yukio Miyashita .. 426

- Development of internal hydrophobic cementitious material
 Shingo Asamoto, Kohki Murao, Isao Kurashigec and Anura Nanayakkara .. 359

Productivity improvement

- Improvement of Ring Tab Die Manufacturing
 Peter Cheriank, Kavin Laoharatchatanun and Sawat Pararach ... 433

- Solving Supplier Selection Problem of Ice Machine Manufacturer Using Fuzzy Multi-objective Linear Programming
 Wuthichai Wongthatsaneekorn and Pornpan Jantasung .. 442

Renewable energy and energy management

- Effect of inlet air velocity on downdraft type gasification system for plastic-waste RDFs
 Thaniya Kaosol, Chaichai Kungkajita, Gumpon Prateepchaikul ... 451

- Upgrading Japanese Cypress Pyrolysis Vapors using Zr-Ti, ZSM-5, and Silica Catalysts
 Michael Bøhrens, Jeffrey S. Crossa, Hiroki Akasakaa, Naoto Ohtakea ... 457

- A Simplified ed Linear Scattering Phase Function for Solving Equation of Radiative Heat Transfer
 Bundit Krittacom, Pathiwat Waramit, Ittiphon Worapan, Anucha Klamnoi and Naronksak Yotha 465

 C. Sansilah, P. Bhasaputra and W. Pattaraprakorn .. 472

- Evaluation of Fruit Peels for Ethanol Production
 Snunhaem Echaroj, Noranit Praisont, Akradeth Buarat, Malee Santikunaporn ... 479

- Automated Fault Detection and Diagnosis in Supermarkets: Review and Investigation
 Denchai Woradechjumroena, Thanapat Promwattanapakdee ... 485

- The Effect of Decanter Cake Concentration on Biogas Production by Block Rubber Wastewater Co-digestion
 Weerapong Lerdrattranataywee and Thaniya Kaosol ... 491
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of an Energy Efficient, Effective, Healthy and Vibrant Public Market Infrastructure</td>
<td>497</td>
</tr>
<tr>
<td>Energy-Saving Behavior in Households after the Great East Japan Earthquake</td>
<td>504</td>
</tr>
<tr>
<td>Energy Management Program for University Campuses: A Case of Yokohama National University</td>
<td>510</td>
</tr>
<tr>
<td>Effect of Mediators on a Microbial Fuel Cell with Carbon-Fiber Electrodes</td>
<td>516</td>
</tr>
<tr>
<td>Thermal Treatment of Municipal Solid Waste (MSW) using Microwave Irradiation with the Assistance of Agricultural Residue</td>
<td>522</td>
</tr>
<tr>
<td>Comparison of Conventional and Microwave Heatings of Municipal Solid Waste (MSW)</td>
<td>529</td>
</tr>
<tr>
<td>System Dynamic Modeling of a Thermoelectric Peltier cooled Refrigerator</td>
<td>537</td>
</tr>
<tr>
<td>Evaluation of Energy Efficiency Standard and Labeling Program in Thailand</td>
<td>543</td>
</tr>
<tr>
<td>Analysis of Energy Consumption and Cooling Load for Improving the Chiller Plant Management of Library: the Case Study of Puey Unphakorn Library</td>
<td>549</td>
</tr>
<tr>
<td>EHD-enhanced Heat Transfer of Fluid Flow related with Sample Size</td>
<td>558</td>
</tr>
<tr>
<td>Thermal Efficiency Enhancement of CB Cooking Stove by Open Type Porous Cover Using Cordierite Alumina Open-Cellular Porous Material</td>
<td>567</td>
</tr>
<tr>
<td>Economic Values of Reliability Improvement for Smart Grid in Thailand by Considering Outage Cost</td>
<td>576</td>
</tr>
<tr>
<td>Power Flow Algorithm Including Wind Turbine Induction Generator</td>
<td>583</td>
</tr>
</tbody>
</table>

Resilient engineering (Natural disaster, Infrastructure, Transportation, etc.)

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Numerical and Experimental Investigation of Flow Propagation in case of Urban Flooding using 3D DAM-Break Model</td>
<td>591</td>
</tr>
<tr>
<td>Seismic Performance of Reinforced Concrete Buildings with Various Ductility by Incremental Dynamic Analysis</td>
<td>604</td>
</tr>
<tr>
<td>Evaluation of damping properties on railway structures by vibration measurement</td>
<td>616</td>
</tr>
<tr>
<td>Resilient Structural Systems for Earthquake Disaster Mitigation Using Collapse Direction Control Device</td>
<td>622</td>
</tr>
<tr>
<td>Application of SFD and 3D Laser Scanning for Heritage Documentation: Wat Yai Chaimongkol, Ayutthaya, Thailand</td>
<td>626</td>
</tr>
<tr>
<td>GEV Distribution with Non-central Moment Estimate for Modeling Extreme Rainfalls</td>
<td>636</td>
</tr>
<tr>
<td>Statistical Downscaling of Annual Maximum Daily Rainfall</td>
<td>654</td>
</tr>
</tbody>
</table>

Chavalit Chaleeraktrakoon and Pitiphat Meemookkich
• Multiple viewpoint change detection in concrete beams for infrastructure resiliency 654
 Krisada Chaiyasarn, Bhakapong Bhadrakom

• A Preliminary Experimental Study for Structural Seismic Response Measurement using Smart Devices .. 662
 Ji Dang, Ashish Threstha, Xin Wang

• Estimation of Phase Velocity of Deep Soil in Bangkok by Spatial Autocorrelation (SPAC) and Centerless Circular Array (CCA) Methods .. 668
 Amornpree Jirasakjamoonsria, Nakhorn Poovarodom

• Effect of Mode Shapes Nonlinearity and Base Translation on Wind Loads and Responses of Buildings .. 677
 Naree Limsamphancharoen and Chanchai Orapinpong

• Analytical evaluation of deformation-mitigation device for structures subjected to earthquake ground motions ... 684
 Zongmu Liu, Masato Saitoh

• A Fundamental Study on Out-of-Phase Rocking Motion Caused by Batter Piles during Earthquake ... 689
 Hiroki MOTOYAMA, Yoshitaka MURONO and Yuusuke TAKANO

• Novel method in avoiding flood induced damages due to tidal waves .. 695
 Shungo Nakabe, Masato Saitoh

• Investigation of Modal Properties for Torsionally Coupled Building from Ambient Vibration Responses .. 700
 Nuttaphon Magteppong, Nakhorn Poovarodom

• Investigation of Critical Parameters for Accurate FEM Simulation of Cracking in Concrete Lining of NATM Tunnels .. 707
 Chamila Rankoth, Akira Hosoda, Satoshi Komatsu, Iwama Keitai

Transportation and logistics

• A Trade Credit Inventory Model with Multivariate Demand for Non-Instantaneous Deteriorating items .. 715
 A.K. Malik

• An ant colony optimization for vehicle routing problem with time windows and shift time limit 726
 Rattakorn Taengsaengjan, Sawat Pararach

• Evidence-based Road Accidents via Dashboard Camera Traffic Monitoring System .. 732
 Boonsap Witchyangkoon and Sayan Sirimontree

• Study of Bus Service Information System Based on User Generated Contents 738
 Chihiro Kawamura, Shunji Ueno, Shinobu Hanamura, Kazuhiro Maruyama, Yuichi Shirasee.
 Aya Kojima, Hisashi Kubota

• Study on Evaluation Index for Walking Space Focusing on Pedestrians’ Smile 744
 Aya Kojima, Manabu Sato, Hisashi Kubota

• Common-line Assignment model -Case Study of Bangkok Transit Network .. 751
 Muanmas Wichiensin

• Directional impact of relevant factors of trip making in a congestion charging scheme 758
 Muanmas-Wichiensin David Boyce

Other

• Optimal Design of a Cascade Thermoacoustic Engine .. 767
 Patcharin Saechan, Isares Dhuchakallaya

• Showcase View: Design of a Public Advertising Display that Renders from the Viewer’s Perspective 774
 Sirisilp Kongsilp, Sra Sontisirikit, Matthew N. Dailey

• Impacts of Nitrogen and Neon seeding in Tokamak Plasma .. 782
 W. Buangam and T. Onjun

• The Formation of radial electric field during L-H transition .. 788
 P Intharat, B Chatthong, T Onjun, and N Pooiyarat
Factors for Success in Eco-Industrial Town Development in Thailand .. 798
Jirarat Teeravaraprug and Tarathon Podcharathitikull

Skin Surface Treatment using Atmospheric Plasma .. 803
Kamonchanok Deemek, Tipwimol Traikool, Thawatchai Onjun, Noppon Pooiyarat,
Supenya Chittapun, Nuankamol Amnuaysin, and Manu Fuangfung

Sampling Smoothed Local Descriptors by Creating a Semi-local Feature in a Vector
Quantization Process.. 807
Izumi Suzuki, Koichi Yamada, Muneyuki Unehara

Simulation of Neoclassical Tearing Mode Effects in Tokamak Plasma .. 813
Wittawat Kanjanaput and Thawatchai Onjun

Experimental Optimization of Heat load and Cooling Flow Rate of a Micro Heat Pipe with R134a
as Working Fluid ... 814
Jirapol Klinbun and Somsak Vongpradubchai

This is an unofficial proceeding; The official one will available online at http://iseee.engr.tu.ac.th/Symposium.php
on November, 16th 2015
EHD-enhanced Heat Transfer of Fluid Flow related with Sample Size

Suwimon Saneewong Na Ayuttaya*, Chainarong Chaktranonb and Phadungsak Rattanadecho

*aDepartment of Mechanical Engineering, Chulachomklao Royal Military Academy, Nakhon-Nayok, Thailand 26001
bDepartment of Mechanical Engineering, Faculty of Engineering, Thammasat University, Khlong Luang, Pathum Thani, Thailand 12120
cCenter of Excellence in Electromagnetic Energy Utilization in Engineering (CEEE), Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Khlong Luang, Pathum Thani, Thailand 12120

Abstract

The numerical analysis has been created to evaluate the Electrohydrodynamics (EHD) characteristics of fluid flow related with sample size. The finite element method is used for solving electrostatic, energy, continuity and incompressible Navier-Stokes equation in the channel flow. Temperature of inlet hot-airflow is controlled at 60°C and initial temperature of coarse beads (d = 0.38 mm, \(\phi = 0.371 \), \(\kappa = 3.52 \times 10^{-11} \text{ m}^2 \)) is specified at 20°C. High electrical voltage is varied from 0 - 30 kV and inlet velocity is varied from 0 – 1 m/s. By wire electrode and plate ground are installed above sample container. In addition, sample sizes are varied both of transverse and longitudinal direction. In this study, the characteristic of flow field and the temperature distributions of fluid flowing through a channel flow and with sample surface under electric field are evaluated. The results show that temperature distribution within sample is related with velocity of fluid flow within sample. Furthermore, average velocity and average temperature within sample are increased relate to increasing electrical voltage and inlet velocity. Finally, fluid flow characteristics with an EHD effect above sample surface is affect inside sample. The suitable sample size can provide an insight on the optimum fluid flow that maximizes heat transfer within coarse sample.

Keywords: Fluid Flow, Heat Transfer, Numerical Analysis, Sample Size, Coarse Beads

* Corresponding author. Tel.: +0-663-739-3487 ; fax: +0-663-739-3487.
E-mail address: joysuwimon1@hotmail.com

1. Introduction

A porous medium is a material containing pores. The pores are typically filled with a fluid and the skeletal material is usually a solid. A porous medium is most often characterized by its porosity, other properties of the medium (e.g., permeability, tensile strength, electrical conductivity) can sometimes be derived from the respective properties of its constituents (solid matrix and fluid) and the media porosity and pores structure. Many natural substances such as biological tissues and food products can be considered as porous media. Also heat
and mass transfer formulations appearing in the food processing literature are synthesized in a systematic and comprehensive way, under the umbrella of transport in porous media [1]. The preservation of food products is an significant issue since they are perishable products. Therefore drying has been proven to be an efficient and inexpensive method of food preservation [2]. Drying process is the process of moisture removal from the product. The heated air drying process starts when the grain is heated (by conduction) when it comes in contact with the air. However higher velocity of airflow in heated air drying has the advantage of reducing the boundary layer of the grain, thereby increasing the heat transfer coefficient of the grain as well as increasing the rate of moisture movement from grain to the surrounding air. Therefore, the drying rate of a specific kind of grain is dependent on both air temperature and air flow rate.

At present, the conventional drying processes of food products include electric field has been developed. This technique is active method and deals with the interactions between electric field, flow field and temperature field. So it calls Electrohydrodynamics or EHD. Flow can be generated when air ions are accelerated through an interstitial atmospheric between electrode and ground area. As the ions are act upon by electric field, they collide and exchange momentum with the neutral air molecules [3]. These electrons collide with neutral molecules if the collision occurs at sufficiently high kinetic energy. However if the ionic wind is generated in the presence of a bulk flow, the ionic wind acts as a Coulombic body force on the bulk flow, adding momentum and disturbing the boundary layer. As a result, moisture from the products can remove. Fa et al. [4] studied the drying process with an EHD for okara cake. The results showed that the drying time under the high electric field condition reduced by 15–40% compared to the control at the final moisture content of 10% wb. In addition, the electric field also had an influence on the appearance of the okara cake. The okara cake after drying kept a whole shape and there was no cranny in the surface when the high electric field was supplied. Nevertheless there were some crannies and cracks in the surface of the control. However, the color of the sample exposed to the high electric field became distinctly browner than that of the control especially the part just under the needle electrode. Saneewong Na Ayuttaya [5] presented the influence of electrode and ground arrangement on behaviors of swirling flow driven by electric force and heat transfer enhancement in a saturated porous medium placed in a channel flow. The numerical results showed that when electric field was applied, fluid flow caused by shear flow effect was observed. When electrode was placed near ground electrodes, fluid flow was small but had a high strength. With occurrence of fluid flow, the convective heat transfer was totally higher than the case of conventional hot-airflow. Furthermore, effect of multiple grounds could induce electric force more than effect of single ground so the fluid flow to faster spread over the sample surface. This causes temperature within sample to rise faster than using single ground.

For above mentioned reports, many researchers are seriously studied the conventional drying processes of food products include EHD. It can be seen that, the electrode arrangements and type of sample are important in the production but sample sizes are not investigated. In this numerical analysis, characteristics of fluid flow and heat transfer related with sample sizes (coarse beads) are studied. In addition, electrical voltage and inlet velocity are varied in order to achieve suitable sample sizes.

2. Numerical method

The computational domain is shown in Fig.1 and composes of main three parts: the first, second and third parts are electric field, fluid flow and heat transfer domains, dimensions of channel are 2.0 m long × 0.3 m high. The wire electrode is arranged above plate ground. Base on ground plate, the left, the middle and the right of electrode positions are shown in Fig. 1(a-c), respectively. The boundary condition is shown in Fig.2. In this simulation,
The electrode is assumed to be a circle with a diameter of 0.5 mm and space charge densities \(q_a \) at the tip of electrode is considered from Griffiths [6]. Temperature of inlet hot-airflow (T.) and initial temperature of coarse beads are controlled at 60°C and 20°C, respectively. High electrical voltage \(V_0 \) is varied from 0 – 30 kV and inlet velocity \(u_i \) is varied from 0 – 1 m/s. By wire electrode and plate ground are installed above sample container. In order to study the suitable sample sizes, a saturated porous medium is installed within a channel, also sample size of coarse bead \(S \) is varied both of transverse \((S_T) \) and longitudinal \((S_L) \) direction. Fluid flow and coarse beads properties [7] are shown in Table 1 and 2, respectively.

Table 1 Fluid flow properties

<table>
<thead>
<tr>
<th>Modeling parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion mobility, (b)</td>
<td>(1.80 \times 10^{-3}) m²/Vs</td>
</tr>
<tr>
<td>Dielectric permittivity, (\varepsilon)</td>
<td>(8.85 \times 10^{-12}) F/m</td>
</tr>
<tr>
<td>Kinematics viscosity, (\eta)</td>
<td>(1.76 \times 10^{-6}) m²/s</td>
</tr>
<tr>
<td>Density, (\rho)</td>
<td>(1.060) kg/m³</td>
</tr>
</tbody>
</table>

Table 2 Coarse beads properties [7]

<table>
<thead>
<tr>
<th>Modeling parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity of solid, (\phi)</td>
<td>(0.371)</td>
</tr>
<tr>
<td>Permeability of solid, (k_s)</td>
<td>(3.52 \times 10^{-11}) m²</td>
</tr>
<tr>
<td>Density of solid, (\rho_s)</td>
<td>(2,500) kg/m³</td>
</tr>
<tr>
<td>Specific heat of solid, (C_{ps})</td>
<td>(0.80) kJ/(kgK)</td>
</tr>
<tr>
<td>Density of liquid, (\rho_l)</td>
<td>(1,000) kg/m³</td>
</tr>
<tr>
<td>Specific heat of liquid, (C_{pl})</td>
<td>(4.186) kJ/(kgK)</td>
</tr>
</tbody>
</table>

Electric force calculations refer to Eq.(1) to (4). The dielectric property is constant and the effect of magnetic field is negligible. Electric field distribution is computed from Maxwell’s equations listed as below:

Fig.1. Computational domain in various electrode position (a) left position (b) middle position and (c) right position

Fig.2. Boundary condition
\[\nabla \cdot \bar{E} = q \quad (1) \]

\[\nabla \cdot \bar{J} + \frac{\partial \bar{q}}{\partial t} = 0 \quad (3) \]

\[\bar{E} = -\nabla V \quad (2) \]

\[\bar{J} = q \bar{E} + \bar{q} \bar{u} \quad (4) \]

where \(E \) is electric field, \(t \) is time, \(q \) is the space charge density in the fluid, \(\varepsilon \) is dielectric permittivity, \(V \) is electrical voltage, \(J \) is current density, \(b \) is ion mobility and \(u \) is airflow velocity. Electric force \((F_E)\) is computed by Coulomb force term as shown in Eq.(5). Fluid flow calculation refers to Eq.(6), Properties of fluids are assumed to be constant and evaporation effect is neglect. Fluid flow is computed through the continuity and incompressible Navier–Stokes equations.

\[F_E = q \bar{E} \quad (5) \]

\[\rho \left[\frac{\partial \bar{u}}{\partial t} + (\bar{u} \cdot \nabla)\bar{u} \right] = -\nabla P + \rho \nabla^2 \bar{u} + \bar{F}_E \quad (6) \]

where \(P \) is pressure, \(\rho \) and \(\mu \) are density and viscosity of fluid, respectively. The last term of Equation (6) is electric force per unit volume.

Heat transfer in a channel and within the sample are calculated from Eq.(7)-(9). The thermal property of the fluid is considered to be constant. The saturated porous medium is considered to be isotropic and homogeneous and saturation of porous medium is fixed at 1. Temperature distribution in a channel flow is calculated by energy equation,

\[\rho c_p \left[\frac{\partial T}{\partial t} + \bar{u} \nabla T \right] = \kappa (\nabla^2 T) \quad (7) \]

where \(c_p \) is the specific heat capacity and \(\kappa \) is thermal conductivity. The governing equations describing the heat transfer within the sample is calculated from Eq.(8) and effective thermal conductivity \((\kappa_{\text{eff}})\) in a porous medium is computed by Eq.(9).[8]

\[\frac{\partial T}{\partial t} = \frac{k_{\text{eff}}}{(\rho C_p)_{\text{eff}}} \nabla^2 T, \quad \text{(8)} \]

\[k_{\text{eff}} = (1 - \phi) \kappa_s + \phi \kappa_l \quad \text{(9)} \]

where \(\phi \) is porosity, \(\kappa \) is permeability. Subscript \(s \) and \(l \) are solid and liquid phase.

This study employs the commercial software; the finite element method is used for solving electrostatic, energy, continuity and incompressible Navier-Stokes equation. This convergence test leads to the mesh with approximately 9,000 elements. Higher numbers of elements are not tested due to lack of computational memory and performance.

3. Results and discussions

In order to evaluate the EHD-enhanced heat transfer of fluid flow related with coarse beads sample size, the maximum velocity in a channel flow (\(u_{\text{EHD}} \)), average velocity within sample (\(u_{\text{avg}} \)) and average temperature within sample (\(T_{\text{avg}} \)) are evaluated. Finally, transverse direction \((S_T)\) and longitudinal direction \((S_L)\) of coarse beads sample are investigated carefully.

3.1 Effect of fluid flow and heat transfer in a channel flow and with sample when no inlet velocity

When no inlet velocity, no sample and EHD effect, fluid flow is swirled in the channel flow due to shear flow from electric field induces the neutral airflow so secondary flow or recirculation is appeared. Recirculation of the left and the right of electrode position are appeared in clockwise and counterclockwise, respectively and 4 cells of the middle of electrode position are circulated because shear flow direction is different. Fig.3 shows fluid flow in various electrode position when no inlet velocity and \(V_0 = 10 \text{ kV} \). When sample container is installed in the channel flow, fluid flow is still swirled within the channel flow.
but it avoids sample container. Recirculation of fluid flow from Fig.3(a-c) is distorted when it is compared to no sample container. When no inlet velocity, $V_0 = 10 \text{ kV}$ and $t = 1800 \text{ sec}$, temperature distributions in the channel flow from Fig.4 is supported with fluid flow from Fig.3. Disturbance of temperature zone is related with fluid flow characteristic. The influence of fluid flow from Fig.3(a)-(c) resulting the temperature distribution of Fig.4(a)-(c).

![Fig.3. Fluid flow in the channel flow and within the sample in various electrode position (a) left position (b) middle position and (c) right position when no inlet velocity ($u_i = 0 \text{ m/s}$) and $V_0 = 10 \text{ kV}$](image)

![Fig.4. Temperature distribution in the channel flow and within the sample in various electrode position (a) left position (b) middle position and (c) right position when no inlet velocity ($u_i = 0 \text{ m/s}$), $V_0 = 10 \text{ kV}$ and $t = 1800 \text{ sec}$](image)

When $V_0 = 10 \text{ kV}$, maximum velocity in various inlet velocity is showed in Fig.5. For low inlet velocity, high shear flow is induced for the middle of electrode position and shear flow is appeared between electrode and ground area so maximum velocity is high. For middle to high inlet velocity, maximum velocity is a little difference. Fig.6 shows maximum velocity in various electrical voltage when absence inlet velocity. For the middle of electrode position, high shear flow is induced so maximum velocity is higher than maximum velocity of the left
and right of electrode position. So the maximum velocity is increased when increasing the inlet velocity and electrical voltage.

Fig.5. Maximum velocity in various inlet velocity and electrode position when \(V_0 = 10 \text{ kV} \)

Fig.6. Maximum velocity in various electrical voltage and electrode position when \(u_i = 0 \text{ m/s} \)

Fig.7. Average velocity within sample in various inlet velocity and electrode position when \(V_0 = 10 \text{ kV} \)

Fig.8. Average velocity within sample in various electrical voltage and electrode position when \(u_i = 0 \text{ m/s} \)

Fig.9. Average temperature within sample in various inlet velocity and electrode position when \(V_0 = 10 \text{ kV} \) and \(t = 1800 \text{ sec} \)

Fig.10. Average temperature within sample in various electrical voltage and electrode position when \(u_i = 0 \text{ m/s} \) and \(t = 1800 \text{ sec} \)

From Fig.7, average velocity within the sample is increased with increasing inlet velocity when consider the left and the middle of electrode positions. When the right of electrode position is investigated, average velocity within the sample is decreased when inlet velocity is 0 to 0.4 m/s and it is increased when inlet velocity is more than 0.4 m/s. From Fig.8, average velocity within the sample is increased with increasing electrical voltage. By the left and the right of electrode positions, average velocity within the sample is clearly increased. For \(t = 1800 \text{ sec} \) and \(V_0 = 10 \text{ kV} \), trend of average temperature within sample (Fig.9) is related with trend of average velocity within sample (Fig.7). Furthermore, for absence inlet velocity and \(t \)
1800 sec, trend of average temperature within sample (Fig.10) is related with trend of average velocity within sample (Fig.8). It can be seen that temperature distribution within sample is not related with maximum velocity in the channel flow but it is related with velocity of fluid flow within sample so inlet velocity direction and disturbance of fluid flow above sample surface are influenced with average velocity within the sample and it is affect inside coarse sample.

3.2 Effect of fluid flow and heat transfer when \(u_i = 0.1 \) m/s

In order to consider in the channel flow and within the sample, Fig.11 and 12 show fluid flow and temperature distribution in various electrode position, respectively.

![Fig.11. Fluid flow in the channel flow and within the sample in various electrode position (a) left position (b) middle position and (c) right position when \(u_i = 0.1 \) m/s, \(V_0 = 30 \) kV.](image1)

![Fig.12. Temperature distribution in the channel flow and within the sample in various electrode position (a) left position (b) middle position and (c) right position when \(u_i = 0.1 \) m/s, \(V_0 = 30 \) kV and \(t = 1800 \) sec.](image2)
From Fig. 11 and 12, electrode position, inlet velocity and electrical voltage are influenced with fluid flow and temperature distribution but fluid flow is not depended on time various. Fluid flow from Fig. 11 ($u_i = 0.1 \text{ m/s}, V_0 = 30 \text{ kV}$ and $t = 1800 \text{ sec}$) is stronger than fluid flow from Fig. 3 ($u_i = 0 \text{ m/s}, V_0 = 10 \text{ kV}$ and $t = 1800 \text{ sec}$) because influence of inlet velocity and electrical voltage as a result, it affects with temperature distribution. Within the sample is considered, fluid flow of Fig. 11(b) is lower than fluid flow of Fig. 11(a) and (c) due to strength of fluid flow in the channel flow is not swirled above sample surface so temperature distribution of Fig. 12(b) is lower than temperature distribution of Fig. 12(a) and (c). Fig. 13 shows comparison between average velocity and average temperature in various electrode positions. Trend of average velocity within sample is related with average temperature within sample. When the right of electrode position, average velocity and average temperature within the sample is highest because it can store airflow in the channel and it can induce airflow above sample surface.

3.3 Effect of fluid flow and heat transfer with various sample size

When $u_i = 0.1 \text{ m/s}$, $V_0 = 30 \text{ kV}$ and $t = 1800 \text{ sec}$, with various sample from longitudinal direction (S_L) is evaluated from Fig. 14 and 15. With various sample from transverse direction (S_T) is evaluated from Fig. 16 and 17.

When $S_T = 10 \text{ cm}$, average velocity within the sample and S_T/S_L is showed in Fig. 14. For the left and the right of electrode position, trend of average velocity is clearly decreased but the middle of electrode position, trend of average velocity is increased. Furthermore, trend of average velocity within sample is related with average temperature within sample, as shown in Fig. 15. When $S_L = 20 \text{ cm}$ and various S_T/S_L, average velocity and average temperature

![Fig. 13. Comparison between average velocity and average temperature within sample in various electrode position when $u_i = 0.1 \text{ m/s}, V_0 = 30 \text{ kV}$ and $t = 1800 \text{ sec}$](image)

![Fig. 14. Average velocity within sample in various electrode position and S_L when $u_i = 0.1 \text{ m/s}, V_0 = 30 \text{ kV}, t = 1800 \text{ sec}$ and $S_T = 10 \text{ cm}$](image)

![Fig. 15. Average temperature within sample in various electrode position and S_L when $u_i = 0.1 \text{ m/s}, V_0 = 30 \text{ kV}$, $t = 1800 \text{ sec}$ and $S_T = 10 \text{ cm}$](image)
within sample are similar trend in the all cases, as shown in Fig.16 and 17, respectively. It can be seen that suitable sample sizes can support maximum velocity and maximum temperature within sample so the optimum fluid flow that maximizes heat transfer within coarse sample.

Fig.16. Average velocity within sample in various electrode position and S_l when $u_i = 0.1$ m/s, $V_0 = 30$ kV, $t = 1800$ sec and $S_l = 20$ cm

Fig.17. Average temperature within sample in various electrode position and S_l when $u_i = 0.1$ m/s, $V_0 = 30$ kV, $t = 1800$ sec and $S_l = 20$ cm

4. Conclusions

The numerical analysis has been created to evaluate the EHD characteristics of fluid flow and heat transfer related with sample size. The following main conclusions can be highlight:

1. Inlet velocity direction and disturbance of fluid flow above sample surface are influenced with average velocity and temperature distribution within sample
2. Average velocity and average temperature within sample are increased with increasing electrical voltage and inlet velocity.
3. The suitable sample sizes can support maximum velocity and maximum temperature so the optimum fluid flow that maximizes heat transfer within sample

Acknowledgements

I wish to express their deepest gratitude to the Thailand Research Fund (TRG5780066) for the financial support of this project.

References